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Abstract 
Time integration is the most versatile approach to analyze the dynamic behaviour of 
structural systems. Nevertheless, the resulting responses are approximations and need to 
converge to exact responses. In presence of nonlinearity, the responses do not exhibit reliable 
convergence. Many studies to overcome this phenomenon are reported in the literature. A 
question still debatable is the efficacy of the proposed methodologies when dynamic systems 
are time integrated in lengthy time intervals. The objective of this paper is to demonstrate that 
a methodology recently proposed by the author of this paper can reliably maintain 
convergence even for nonlinear dynamic systems studied in lengthy time intervals. 

INTRODUCTION 

Due to the complicatedness of structural systems, the behaviours of many systems 
need to be considered as nonlinear. Furthermore, in regions with high seismic risk, 
considering inertial forces is of high importance. (Specifically, though yet not 
explicitly stated in the design codes; nonlinear dynamic analysis should be taken into 
account, when studying the actual seismic behaviour of buildings structural systems; 
see [43].) A broadly accepted approach to analyze structural systems with nonlinear 
dynamic behaviour is to discretize the models defining the dynamic equilibriums in 
space [1,6,21], and then, to time integrate the resulting mathematical models below,  
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In Eq. (1), M stands for the mass matrix; intf  and f (t) respectively express the vectors 
of internal forces and external excitations; ( )tu , ( )tu& , and ( )tu&&  denote the vectors of 
displacement, velocity, and acceleration, respectively; 0u , 0u& , and 

0intf  imply the 
initial status of the mathematical model; and Q  represents some restricting 
conditions, e.g., problems involved in impact or elastic-plastic behaviour [23,49]; all 
with respect to the degrees of freedom set for the system under consideration.  

Concentrating on the time integration stage noted above; for the general case of 
multi-degree of freedom systems involved in nonlinearity [14,19], the formulation 
can not be exact. Approximate analyses necessitate thorough attention to the concept 
of convergence [20]. To study the convergence of the responses computed by a time 
integration method, it is conventionally accepted to consider 
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or, in view of the definition of error [33], i.e., UUE a −= , study the validity of  
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where, aU  denotes an arbitrary component of the computed response, U  stands for 
the corresponding exact value, and t∆  is a parameter controlling the sizes of all time 
steps in the integration process. For linear problems, the requirements of convergence 
are set since decades ago [5,48]. Nevertheless, in presence of nonlinearity, 
convergence shortcomings are reported by many researchers [4,8,9,10,34,39,42,50]. 
Figures 1.a and 1.b display the difference between responses convergence in absence  
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Figure 1- a) Typical changes of error for practical time steps 
 
and presence of nonlinearity, schematically (q in Fig. 1.a denotes the order of 
accuracy also known as the rate of convergence [26,48]). In spite of the vast number 
of studies carried out on this subject [3,4,11,12,15,22,24,27,32], the convergence is 
not still reliably proper (Fig. 1.a), when the integration interval is lengthy [25]. In 
view of the fact that one of the recent methodologies for overcoming convergence 
shortcomings is presented in the Ph.D. Thesis of the author [37], the objective of this 
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paper is to demonstrate that the new methodology does not lose its effectiveness 
when time integration is carried out in lengthy time intervals. To attain this objective, 
first, the methodology is briefly reviewed. Then, in view of an example from the 
literature, the methodology is applied to problems studied in lengthy time intervals, 
and finally, after a short discussion, the paper is closed with a set of brief conclusions. 

THE METHODOLOGY 

The author of this paper has recently proposed a new methodology for preserving 
responses proper convergence (Fig. 1.a) in presence of nonlinearity [18,17,37,40,45]. 
For the sake of the continuity of the discussion, the methodology is briefly explained 
below. 

Considering conventional time integration of Eq. (1), the approximate 
computation is at all time instants involved in two sources of errors [35,37,42]; 

•  The errors induced by the approximate formulation of the integration methods. 
•  The residual errors of nonlinearity solutions. 

In order to maintain responses convergence in presence of nonlinearity, it is essential 
to force the effects of the above two sources to change consistently [16,37,41,42]. In 
addition, computational facilities can not provide complete accuracy [13,37,41]. 
Therefore, though at each nonlinearity-detected time step, nonlinearity iterative 
solutions should end with  
 
 ,;1,3,2,1 δδδδ ≤>−= klkl K  (4)
 
where, lδ  implies a component (generally one number) of the residual of  the 
nonlinearity solution after l  iterations, δ  is a positive constant as the nonlinearity 
tolerance, and  stands for an arbitrary norm [31]; and, in general, 
 
 0≠kδ  , (5)
 
there exists a close vicinity of zero, i.e. B, we can not decrease the nonlinearity 
residual to that extent [7,46], 
 
 ( )εδε ,00 Bk ∉>∃  . (6)
 
This implies that, when at a nonlinearity-detected time step, δ  is very small; we may 
not succeed to arrive at Eq. (4), even after many iteration. The consequence can be 
both additional round off error by each iteration, and also stopping at that time step 
(not proceeding along the time axis) [20,31,37]. An accepted approach to overcome 
this shortcoming is to restrict the number of nonlinearity iterations [37,46], i.e. k, by 
 
 Kk ≤  . (7)
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Therefore, in time integration of Eq. (1), t∆ , δ , and K are algorithmic parameters, 
and it is essential to cause numerical consistence among the effects of these three 
parameters [35,37,42,43]. In this regard, first, Eq. (7) should be replaced with [37], 
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In Eq. (8), iS  and is  ( ki K.3,2,1= ) denote the total value of the response component 
in correspondence to δ  and the corresponding increment in the last iteration, 
respectively, and both after i iterations; and k  is a parameter implying the 
computational facilities, i.e., single or double precision, see [13].  

Next, in order to control the two theoretical sources of error talked about in the 
start of this section and maintain responses proper convergence in presence of 
nonlinearity, the new methodology records the residuals of nonlinearity solution, i.e. 

kδ , all along the time interval; and considers an arbitrary discretization of the total 
temporal-spatial space, i.e. Ω , [37,40,45]. If we define this discretization by 
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where, Ωi  is an arbitrary segment of Ω  identified by i  as the left subscript; and 
control the sizes of all the time step with t∆ , the nonlinearity tolerances that when 
being applied in segment (subspace) Ωk  for all  k, yield proper convergence in time 
integration with other t∆  can be determined from  
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In Eq. (10), t ′∆  is a parameter controlling the time step sizes in the second analysis 
( tt ∆≠′∆ ). In brief, comparing Fig. 1.a with the schematic error changes in presence 
of nonlinearity (Fig. 1.b), we can apply Eqs. (8), (9), and (10) to eliminate the 
undesired effects of nonlinearity on convergence and modify Fig. 1.b to Fig. 1.a. 

PERFORMANCE AT LENGTHY TIME INTERVALS 

With regard to the explanations in the previous sections and the step-by-step nature of 
the time integration methods, it seems reasonable that, when the time intervals 
corresponding to the segments Ωi  in Eq. (9) are all set equal to the T  in Eq. (1), the 
methodology will maintain proper convergence (Fig. 1.a) regardless of T. This is 
demonstrated in the next section. 
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ILLUSTRATIVE EXAMPLE 

The efficacy of the methodology presented in the previous section along ordinary 
time intervals is demonstrated by several examples [17,36,40,44,45,47]. One of these 
examples is as stated below: 
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In order to convert the above problem to a new problem with lengthier time interval, 
first, we should define a parameter to measure the elongation of the time interval. As 
an straight forward choice, we can use 
 
 ,1,0 >=<≤ aTaTTt newnew (12)
 
where, T  and newT  denote the length of the time intervals in the original problem, e.g. 
Eq. (1), and the problem with lengthier time interval, respectively; and a is a 
parameter defining the lengthiness of the time interval compared to the time interval 
of the original problem. Considering positive integer values for a, the excitation along 
the newT  time interval can be defined by repeating the original excitation for a times 
sequentially along the time axis. Applying the above approach and considering 

20,4=a  results in three problems defined by Eq. (11), (12), and either of 
 
 1)    1=a  2)   4=a  4)   20=a , (13)
 
from which the last two can be considered as problems with time intervals lengthier 
than the time interval of the original problem. (Figure 2 illustrates the almost exact 
response of these three problems.) To study the efficiency of the new methodology, 
the above mentioned three problems are analyzed with the Newmark’s average 
acceleration method [30] (average acceleration is the integration method suggested in 
 

 

 
 

 
 
 
 
a) a = 1 

 
 
 
 
 
 
b) a = 4 

 
 
 
 
 
 
c) a = 20 

Figure 2 – The almost exact response of the problems defined by Eqs. (11), (12), and (13) 
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the literature for problems involved in nonlinearity [2]), double precision accuracy 
[13], and the Fractional-Time-Stepping nonlinearity solution method [28,29,38] with 
a relative displacement nonlinearity tolerance equal to 0.001. The analyses are then 
repeated several times, each with halving the time steps. Nonlinearity iterations are 
controlled by once Eqs. (8) and (10), while Ωi  is set equal to the temporal-spatial 
space consisted of the total time interval and the single degree of freedom; and then 
once, by Eqs. (4) and (7), while δ  (0.001 for relative displacement) and k  ( 5=k ) 
are constant for all analyses. Considering the errors of the displacements at the end of 
the time intervals as the criterion for studying convergence, Figs. 3 display the 
corresponding convergence plots. Figures 1 and 3 apparently reveal that the 
methodology explained in this paper can reliably maintain the proper convergence 
trend (Fig. 1.a), even for nonlinear problems studied in lengthy time intervals. 
 
 

 
  
 
 
 
 
 
 
a) a = 1 

 
 
 
 
 
 
 
b) a = 4 

 
 
 
 
 
 
 
c) a = 20 

Figure 3 – Convergence trends for final displacements, in time integration of Eqs. (11), (12), 
and (13) 

CONCLUSIONS 

By controlling the iterations of nonlinearity solutions according to a recent 
methodology [31-34,35,41,42,47], responses generated by time integration can 
converge properly, even in presence of nonlinearity in lengthy time intervals. Further 
research on the subject, especially for other types of nonlinearities, seems instructive. 
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