
A STOCHASTIC 3D-MODEL FOR SIMULATING
VIBRATIONS IN SOIL LAYERS

W. Kreuzer∗, H. Waubke, P. Balazs

Acoustics Research Institute, Academy of Sciences
Reichsratsstrasse 17, A-1010 Vienna, Austria

kreiza@kfs.oeaw.ac.at (e-mail address of lead author)

Abstract
A major problem for the simulation of vibrations in soil is that material parameters
cannot be measured exactly. To avoid this problem stochastic models can be used, but
these have the general drawback that the linear system of equations which has to be
solved is very large and thus a lot of computer and memory resources are needed. We
present ideas for a model that allows the use of stochastic parameters, but also reduces
the high costs of solving the system of equations with a special iteration scheme.

INTRODUCTION

Strategies that deal with annoying vibrations caused, for example, by railway lines
or heavy machinery in industrial plants become more and more important, especially
when buildings are to be constructed near such vibration sources. Numerical mod-
els that are able to predict the level of vibrations in the ground can reduce costs for
planning and construction of such buildings. Up to now such models are based on
deterministic methods or perturbation theory (see for example [1, 2, 3]) where only
small perturbations of the material parameters are allowed. But in soil dynamics pa-
rameters which describe the soil properties cannot be measured exactly and the results
may vary to a large extent. In order to quantify this variability stochastic models, i.e.
models that use stochastic material parameters, should be used, but in general such
models have one major drawback: The matrix involved is very large, and therefore an
efficient solution of the problem with standard numerical tools is not possible. In this
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paper we introduce some ideas for a stochastic 3D-model which uses a special itera-
tion scheme that allows us to decouple the large scale system into smaller subsystems,
thus making an efficient numerical solution possible.

GENERAL SETUP

We assume that it is possible to divide the ground into different horizontal layers.
Material parameters for these layers can either be deterministic or stochastic. As an
additional feature it is possible to add a fluid layer on top and - to prevent reflections
at the bottom- a halfspace layer at the bottom.

All layers except the stochastic ones are modelled using Helmholtz potentials,
whereas for the stochastic layers a formulation using finite elements is used. In this
paper we will concentrate on the stochastic layers. Ideas for the deterministic case
can be found, for example, in [4, 5]. On top of the first layer a load which moves with
a speed v along the x-axis is applied. This load oscillates with a frequency f0 thus
simulating some vibrating source. It can either be a point or a rectangular shaped load
with length b1 and height b2 pointing downwards in the z-direction.

To describe the relation between deformation and external force we use a weak
variational formulation:
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Here δ indicates the variation, u = (u, v, w)T is the vector containing the deforma-
tions in x, y and z direction. The properties of the soil layers are described with the
shear modulus G(x, y, z, θ), the Poisson ratio ν and their density ρ. It was assumed
that only the shear modulus is dependent on the stochastic variable θ. The load is
represented by the function fExt. For simplicity of notation we define ux := ∂u

∂x
, all

other derivatives are defined analogically.



ICSV13, July 2-6, 2006, Vienna, Austria

STOCHASTICS

To deal with the stochastics of the shear modulus and the deformations we will use
the following two decompositions:

Karhunen Loeve Expansion (KLE)

We assume the shear modulus G(x, y, z, θ) to be a second order Gaussian random
process with mean G0(z) and bounded variance. Therefore it is possible to use the
KLE (see [7] for details) to expand G into

G(x, z, θ) = G0(z) + Gs

∑

i

√

λifi(x)ξi(θ). (3)

For our model we assume that the ξi form a series of orthogonal normally distributed
random functions, additionally we impose the constraint that the mean of G is only de-
pendent on z. For better readability we define the vector x := (x, y). The (λi, fi(x))

are eigenvalues of the Fredholm integral equation of the 2nd kind with the covariance
function C(x1,x2) as kernel.

To simplify calculations we assume that C can be split in the form C(x1,x2) :=

C1(x1, x2)C2(y1, y2), so (λi, fi(x)) can be calculated as the product of solutions of
the simpler one-dimensional integral equations with C1 and C2 as kernels. Ways to
calculate these eigenpairs numerically can be found, for example, in [6, 7, 8].

In the next sections we will often use the terms deterministic and stochastic
parts of the equation. With Eq. (3) it is possible to split G into a deterministic part
containing only the mean G0(z) and a stochastic part containing the rest. Similarly to
this the whole system can be split up into two such parts.

Chaos polynom expansion

The randomness in the material parameter also causes a randomness in the deforma-
tions. To handle this we use an expansion into a series of Hermite Polynomials Γi(ξ)

(see also [7, 9]):
u(x, y, z, t, θ) =

∑

i

u[i](x, y, z, t)Γi(ξ). (4)

The vector ξ is build up by the different ξi from Eq. (3).
The Hermite polynomials are orthogonal with respect to the L2-product with

the measure e−
ξ2

2 , i.e.

E(ΓiΓj) =

∫

−Ω

Γi(ξ)Γj(ξ)e−
ξ2

2 dξ = 0, ∀i 6= j. (5)
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THE LINEAR SYSTEM

The remaining functions u[i](x, y, z, t) from Eq. (4) are expanded using 2nd order
B-splines hj(z):

u[i](x, y, z, t) =
∑

j

u
[i]
j (x, y, t)hj(z). (6)

After a Fourier transformation (x, y, t) → (k, `, ω), an approximation of the integrals
(now with respect to k, ` and ω) with sums and variation with respect to the unknowns
û

[i]
j (ki1 , `i2 , ωi3) we can derive a linear system of equations

K̂û = f̂Ext (7)

with stiffness matrix K̂, a vector of the unknown deformations û and a vector f̂Ext

for the external load. As we shall see later on, ki1 and `i2 can be chosen arbitrarily,
but there is a strong link between ki1 and ωi3 .

Even for a small problem with (ki1 , `i2) ∈ [−6, 6]×[−6, 6], 10 layers, an expan-
sion length of 4 for the KLE and a maximum order of 2 for the Hermite-Polynomials
(which means we have to consider 15 different Hermite polynomials), the dimension
of the system would be n = 76050 for one single frequency. Assuming O(n3) for a
LU decomposition, we would need approximately 4 · 1014 operations just for the LU
decomposition of K̂. Unfortunately as we will see later, K̂ is not sparse, so solvers
designed for such matrices cannot be used either.

Iteration scheme

To solve Eq. (7) efficiently an iterative scheme is used. The main idea behind this
scheme is to split the system into a matrix K̂d containing all deterministic parts and
a stochastic matrix K̂s. The solution of the whole system is now calculated using

K̂dû0 = f̂Ext

K̂dûn = −K̂sûn−1 + f̂Ext. (8)

This scheme has the advantage that we can exploit the special block-diagonal struc-
ture of K̂d to simplify calculations: Instead of one large system we have to solve
several smaller subsystems (one “small” block for each wavenumber, each Hermite
polynomial and each frequency). This special structure can be explained by the way
the mean of G was split into deterministic and stochastic part.

When making a Fourier transformation with respect to x = (x, y) only products
of two functions dependent on x have to be transformed (see Equ. (2) because we
assumed that G0, ν and ρ are independent of x. Since a weak formulation is used we
can apply Plancherel’s theorem:

∫

R2

G0a(x)b(x)dx =

∫

R2

G0â(k)b̂(−k)dk . (9)
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Here a and b are some arbitrary functions, â and b̂ are their Fourier transforms.
In the stochastic part we have the additional functions fi from the KLE (see Eq.

(3)). Thus Plancherel’s theorem can only be used in combination with a convolution
∫

R2

fi(x)a(x)b(x)dx =

∫

R2

∫

R2

f̂i(k − k′)â(k′)b̂(−k)dk′dk (10)

Compared to Eq. (9) where only functions are coupled at the same wavenumber
k, we have an additional integral in the stochastic case (Eq. 10), that implies a full
coupling for all wavenumbers k and k′.

An similar argument can be used when calculating the expectation value. In the
deterministic case we can use the orthogonality of the Hermite polynomials
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i ).

(11)
In the stochastic case there is the additional random function ξ and the mixed expec-
tation values E(ξΓiΓj) are in general non-zero. So compared to the deterministic case
there is a strong coupling between coefficients for all Hermite polynomials.

MOVING LOADS

As already mentioned an external load that moves with a velocity v along the x-axis
and that vibrates with a frequency f0 can be used with the model. It can either be a
pointload or a rectangular load with length b1 and width b2. In the first case the load
is described as

fExt = Pδ(x − vt)δ(y) cos(2πf0t) , (12)

the second load is defined with

fExt =
P

b1b2

Π

(

x − vt

b1

)

Π

(

y

b2

)

cos(2πf0t). (13)

Here δ(x) denotes the Dirac Delta function, Π(x) is the rectangle function

Π(x) =







0 |x| > 1
2

1
2

|x| = 1
2

1 |x| < 1
2

. (14)

The calculations of the deformations are done inside the region (x, y) ∈ [−ax, ax] ×

[−ay, ay], outside this interval the deformations are continued periodically. After a
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Fourier transformation we get

f̂Ext =
P

8axay

(δ(ω +
kv

2ax

+ f0) + δ(ω +
kv

2ax

− f0)) (15)

for the pointwise load, for the rectangular load we have
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Combining the above equations with Eq. (2) we can see that the important part of
fExt consist of the factors

ŵ
[i]
j (−ki1 ,−`i2 ,

ki1v

2ax

− f0) + ŵ
[i]
j (−ki1 ,−`i2 ,

ki1v

2ax

+ f0) . (17)

This means that for each wavenumber ki1 there exist only two frequencies for which
the right hand side of the small subsystems are nonzero, which again reduces the
computational effort. In Eq. (17) we can also see the already mentioned coupling
between the wavenumbers and the frequencies.

EXAMPLE

As an example to test our model we use a setup with 40 deterministic layers, with
one fluid layer on top and one halfspace layer at the bottom to prevent reflections.
Material parameters for this example are given in Table 1, as external load we use
a force moving with velocity v = 60m/s and with a frequency f0 = 100Hz. The
wavenumber grid consist of 33 × 33 points, the bounds in the x and y directions are
set to ax = 30 and ay = 30. Figure 1 shows the deformations with respect to the

Layer G0 Gs ρ ν d

Fluid 2e9+2e6i 1000 1
Stoch. 2e8+2e7i 1e6+1e5i 1800 0.3 0.2×20

Halfsp. 2e8+1e7i 1800 0.3

Table 1: Material parameters for the example: G0 and Gs are mean value and variance
factor of the shear modulus in N/m2, ρ the density in kg/m3, ν the Poisson ratio and d

height of the layer in m.

z-direction of the first stochastic layer. The excitations at the far right edge of the grid
are due to our periodicity assumption. A similar plot for the standard deviation of the
deformation is depicted in Figure 2. Again please note that the excitations at the right
edge are due to the periodicity of the system.
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Figure 1: Mean value of the deformation in the z-direction for the first stochastic
layer after 21 time steps
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Figure 2: Standard deviation of the deformation in the z-direction for the first stochas-
tic layer after 21 time steps
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SUMMARY

A 3D model to calculate vibrations in soil layers was presented. With this model it is
possible to use a stochastic shear modulus which normally would increase the com-
putational cost for calculations to a high degree. An iteration scheme was introduced
which reduceed this calculation costs. Finally some results for a test example were
presented. This project was supported by the Austrian Science Fond, FWF: P-16224-
N07.
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