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1 ABSTRACT

In order to assess and prevent noise emmission in the environment of traffic routes, prognosis
models for wave propagation are of interest for many applications.Guided by experience in
railway traffic simulation, this paper introduces a new model for wave propagation and sim-
ulation in layered orthotropic media. The model uses a component-wise Fourier transform to
obtain the general solution within one layer; then, balances at layer boundaries are used to
obtain a grid of stress / displacement vectors.The accuracy of the model is tested, and results
are presented. Some ideas on implementation and acceleration are presented as well.

PACS Code:4320Bi Mathematical theory of wave propagation (linear acoustics)

2 INTRODUCTION

The simulation of vibrations induced by machinery and traffic has become of increasing con-
cern within the last decades, due to frequent construction of high speed trains and mass rapid
transport systems [1]. Theoretical studies on the propagation of waves in anisotropic layered
media have been an important field of research for many years, and have been of particular
use for applications in geophysics and seismology [2, 3]. Therefore, much research has been
done on wave propagation in anisotropic layered media [4], however, layered orthotropic me-
dia has rarely been focused upon. In order to derive a suitable model for applications, this
paper assumes the soil to consist of orthotropic layers, and an orthotropic halfspace bounding
from below. Waubke [5] has also suggested extensions and developments for this model in
earlier papers.

This paper draws these ideas together, and offers some concrete numerical results. In
the first section, a model of wave propagation is derived by Fourier transform of the classical
wave equation. The model is based on a Fourier transform of the wave equations, resulting in
a system of polynomial equations. Backward transformation in the vertical direction is used to
handle the boundary conditions. The balance of stresses and displacements at the layer bound-
ary delivers a system of linear equations, yielding the stress and displacement level at the layer
boundaries as functiongk,, ky, z,w) ands (k;, ky, 2, w). Thus, the displacement and stress
levels can be calculated at arbitrary poif#s, &, z, w); backward Fourier transform yields
agridin(z,y, z,w).This model applied to a system of layers gives a transport matrix for the
layer boundaries. It yields a system, established in section 3, whose solution permits the com-
putation of stress and displacement levels at arbitrary points within the media. The advantage
of this approach is its numerical stability, which permits the calculation of displacement and
stress levels for large distances from the point of excitation. At first, the focus lies on one layer
and the equations describing the process are derived. The strain ¥&@wrector of local



derivatives of the displacement vectgrdenoted by := D(0;, 9y, 0,)u. The soil is assumed
to consist of n orthotropic layers with widtls, . . . d,,. For each layer, the following parame-
ters are needed: item the shear moddlyg, G, G, the Young’s modulug’,, £, E., the
Poisson ratios,.,, v, V.., the densityp and widthd. Additionally, homogenous behavior in
the horizontal directions is assumdd, = £, G,. = G.,, andy,, = v,, hold. The stress
vectorso can be computed as they correspond witha the elasticity matrixg = FEe; the
matrix E isof block diagonal form with
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The equilibrum of forces leads to the equation
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whereb is some external force. As Eq. (2) is linear(im,, u,, u.), arbitrary solutions can be
calculated by finding the homogenous and particular components of the solution. We denote
the Fourier transfornyf of a function f(a) by F, . (f)(k«) The Fourier back transform is
denoted byf,;ia.The displacement vectar := u(z,y, z,t) is Fourier transformed in all
directions:

a(k:ca ky7 kZaW) = f:}c,kz (Fy,ky (fz,kz (ft,w (u)))) (kx7 kya k27w)- (3)

Thus, the Differential operator D is substituted by the polynomial opetat@imple equa-

tions are obtained, expressing the link of the transformed displacement vector and the trans-
formed stress vectott = E¢ = EDa, whereD = D(ky, k,, k) is the transformed differ-

ential operatoD. Note thatE'D is symmetric. The wave equation takes the form

BEDa + pw?t =: At = b. (4)

Nontrivial homogenous solutions exist in the case wher{A) (k. k,, k., w) = 0. In order
to cope with the boundary conditions, it is useful to implement a gri@jnk,, w). Therefore
k., ky,w are treated as constants, and are omitted in some cases, for better readability.

3 DERIVING THE EQUATIONS

3.1 The general form of a solution

Note that the matrixA has some symmetry properties, which we will stress in the subsequent
calculations. The conditiodet(A) = 0 is necessary for solutions ofa = 0, u # 0 to ex-
ist. So, the next task is to compute the valueg ofuch thatA is singular. The values with
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det(A(k,)) = 0 are called eigenvaluesby abuse of notation, the vectors of the correspond-
ing kernels are called eigenvectors, denotedlyiffering from the mathematical definition.

The polynomial is of degree 6 without odd powerskof and so the substitutioh = k2 is
justified, reducing the degree of the considered polynomial to 3 at the same time reducing
calculation effort. Note that the homogeneous solutiopando;, are nontrivial fork, = k;

fori =1,...,6 such that the homogeneous solutignand the corresponding stress function

o}, take the form

6

in(kz) = eniWib(ke — ki), onks) =
=1 =1

ChJ'EE(IiZ')\I/i(S(kZ — K,i) (5)

NE

for arbitrary coefficients;, ; for 1 < i < 6. We defineH (k,, ky, k;,w) := ED(k:m, ky, ki, w)
for better readability, and writé/ (x;) =: H; for the sake of simplicity. Some properties of
the eigenvalues can be derived directly from the structuré;dét U(k,) be an eigenvector
of A(k,). The symmetry ofd yields

A(k,) = ETA(~k,)E3s  for E3=diag1,1,—1). (6)

Using this, the eigenvectok (—k,) can be obtained fron¥ (k) by changing the sign of the

third component. The effort of the eigenvector calculation is reduced to the half thus. In order
to simplify the notation, the eigenvalues and eigenvectors are numbered respectively; so, let
x; be thei-th eigenvalue ofi, and¥; the corresponding eigenvector, forK i < 6.

As the model assumes the media to be layered with respect tadhection, it is necessary

to evaluate the displacement vectors at specific values fbinereforey is transformed back

over thez direction,

a(kxa kya 27(")) = f];%z(a(kx7 kya kZ?w))(Z)‘ (7)

Equations fori are derived by performing the transformation. Any homogeneous solition
can be expressed as a linear combination of the eigenvektpfor the homogeneous part
uyp, of the displacement vector, and the homogeneous part of the stress dgthis yields
with Eq. (5)

6 6
Up, = Z chiViexp(jriz), op= Z cniH (ki) V5 exp(jriz), (8)
=1 =1
By variation of constants ansatz, the general form of the solution can be expressed as
6 6
u= Z(CW +¢pi(2))Viexp(jriz), &= Z(c;m- + ¢p,i(2))H;Viexp(jriz)  (9)
=1

i=1

for z-dependent coefficients, ;(z) from a particular solution.



Figure 1: Treatment of a loaded layer: the layer is split by a virtual layer boundary, at the
depth of the impact.

3.2 Calculation of stress and displacement vector at layer boundaries

In order to derive the equations for the particular solution, a discrete impact at atidepithe
a layer is assumed. Concretely, the impact at a gaiftyo, 2o, to) with constant directiorf
is assumed in the form

p(x,y,2,t) = 0(x — 20)6(y — y0)d(2z — 20)6(t — to) f- (10)
The Fourier transform is applied on thé&z). This yields
P(ka, ky, k2, w) = exp(j(zoks + yoky + 20k> + tow)) f- (12)

As the model is invariant to translation, the origin of the coordinéteg, z,w) is set to the

point of impact, so that = f. Note that if the origin is assumed in the middle of the layer, a
transformation factoexp(z),) is yielded (see Figure 1). A Fourier backward transform gives

p as right hand side of Eq. (4). It is to be taken into account that the balance of stresses only
holds for the components that act at the interface of the layer boundary. Thus, and BY)Eq. (
only the component3, 5 and6 are important for the stress balance equations. So, the \ector

is reduced to dimension 3 by dropping the other components. To be exact, the reduced matrix
H.. is defined consisting of the third, fifth and sixth columnFf H is replaced byH.. in Eq.

(8).

A layer with width d is considered, loaded with an impact vecfoin depthd,. The layer

is split at the depth of the impad},, and two layers with identical material parameters are
derived. The lower virtual layer is treated as an unloaded layer. For the upper virtual layer
let @, (ky, ky, 2 = —dp,w) andd,, (ky, ky, 2 = 0,w) be the transformed displacement at the
upper and lower boundary, respectively. For the lower virtual layet, /& the displacement
vector at the upper boundary aiigithe one at the lower boundary. Evidently, = ,, holds.

6 6

’l]u = Z ai\I/Z' eXp(—j/ﬁidp), 5u = Z aiH,.ﬂ-\I/,' exp(—jmdp) (12)
i=1 =1

6 6
i =Y ai%,  Gm= Y aH. (13)
i=1 i=1
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6 6
Uy = Z bV, Gn= Z biH,;V;, (14)
i1 i1

6 6
Ug = Z biViexp(jri(d —dp)), Ga= Z biH, ;V;exp(jri(d —dp)).  (15)
i=1 i=1
The equations for displacements and stress at the point of impact can be established now. As
mentioned abovey,, andu,, equate to each other. The stress vectors, andg,, at the
virtual layer boundary differ by. The coefficient vector. andb consist of homogenoeous
and particular party = ay, + a,, b = by, + b,. The homogeneous parts equate to each other,
ap, = by. This can easily be verified by setting the load vector to zero. The particular part
b, = 0 as the lower virtual layer is treated as an unloaded layer. The particular,Jaas to
satisfy

6 6
ﬂp,m = Z ap,iqji =0, 5'p,m = Z ap,iHr,i\IJi = ﬁ (16)
=1 i=1
This givesa, as the solution of a linear equation
Ma, =po  with M := ( v > . Po = ( " ) . (17)
Hy iV, (i=1,...,6) p

The layers are unified again. The coefficient of the displacements and stresses of the
unified layers are denoted lay= c;, + c,. The particular component of the solution is given
by ¢, = a, = M~1p,. For the displacement and stress vectors at the layer boundaries it is to
be taken into account that the origin is set to the middle of the layer. This yields a correction
factorexp(jriz,) for the partial components. For an arbitraryvithin the layer boundaries,
the stress vectar(z) and the displacement vectafz) is thus computed

6

i) = D (ens + cpiexpliiz) Wi explini(z — 3). (19
=1
: d

5) = D (eni + eprexplinizy)) Bl explini(z — 9)). (19)

=1

The factorsexp(—jri(z — d/2)) are derived from the backward Fourier transform of the
i-th component for the upper layer boundary (compare with Eq. (8)); as a consequence,
exp(:l:%jﬁid) arise componentwise for the layer boundaries, @ndj«;z,) for the particu-

lar solution. The matrice® and=, as well as the vectar, are defined as follows, in order to
express the displacements and stresses at the layer boundaries:

o, W, exp(—2jkid) )
0 (8)o (Mt @)
B4 v; exp(%]/ﬁd) (i=1,...,6)
—_ Eru H,;V; exp(—%jliid) )
P = —_— ’ = ’ . (21)
( Erd ) ( H, Wy exp(—gjrid) (i=1,...,6)
p = (cpiexp(jrizp))(i=1,..6) (@2)



This yields

i = (ZU>:@ch+<96‘p>:ah+ap, (23)
d
- ( Trou ) =S, + ( Srup ) = Gy + Orp. (24)
O-T’d 0 ) )

Substitutinge, = ©~1(a — 1y,) into the stress equations, and definiig= =,0~1, it holds
that
&r = .07 (0 — @) + Gy p = Kt — Ky + Gy, (25)

for a loaded layer.The case for an unloaded layer is even simpler, and can easily be deduced
from the general case by setting the partial component to zera. L&tda, be the displace-

ments at the top and bottom boundary of an unloaded layer, respectively, a5, the
according stress vectors, aidthe matrix as above, calculated from the layer data. By setting
the partial components to zero in Eqg. (25), the equation

< Trh ) = K( ok ) (26)
Orhd Ud p

is derived. As the layer is unloaded, the displacement and stress vectors only consist of their
homogeneous part, and the indegan be omitted.

4 BALANCE AT LAYER BOUNDARIES

Now, a system of layers is considered. For thigh layer , let the matrices;, ©;, =;, H;

K; denote the matrices defined in the section before, evaluated foitthiayer. The layers

are numbered in the canonical way, such thats the displacement at the upper boundary

of the first layer, andi, . is the transformed displacement vector at the lower boundary of

the lowest layer. The stress vectors are sometimes denoted alternativgly as o;, if it

provides better readability that way. The indeis dropped ino,., =, etc., as the full stress

vector will not be considered in this section.

For unloaded layers, the balance of stresses is established by equating the stress term on the
lower boundary of layei with the stress term for the upper boundary of lairerl (note that

ﬂdﬂ' = ai-{-l = ﬁu,i—&-l)- This ylelds

U Uit1
K; = K; 27
NERE NS @)
4.1 Boundaries of loaded layers

The layerk is assumed to be loaded. Let the indiéeandp denote the homogeneous and the
particular part of the solution. By Eq.8%) and (24), both the homogeneous and the particular
component of the stress vector is computed as

Gpk = (“kg‘p ’ ) (28)
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Gnp = Ekck =ZkO; tp g = Kyiip g, = (29)
Kku>~ (Kkuu Kkud)~

= ' Up o =: ’ ' Uy o 30

< Ky q ok Ky g Kidd ok (30)

The stress vectors at the layer boundaries equate in the same way, up to the partial component
of the solution. Withs, ,, = 65,1 4 it holds that

Ok-1,d = Ok = Oheu + OpJe.us (31)

and as the stress vector at the upper boundary takes thesfoyre= =5, (¢, + pi) (see Eq.
(29)), the balance of stresses at the upper loaded boundary takes the form

Ek—1,dCk—1 = Exu(ck + D) (32)
and leads to
Ujo_ U N -
Kk:—l,d < li ! ) = Kk:,u < ~ F > - Kk,uuup,k + Op.k,u- (33)
Uk Uk+1

after substitutiore; = ©;(@; — ;) for i = k — 1, k. The vectori, ; is equivalent tai,
from Eq.(23), andy, 1., is equivalent tas,, from Eq. (24), for thek-th layer. For the lower
boundary, sincé;, ;4 = dy1.4, this yields

U 5 U
Kj.a < ok > + K dautp = Ki+1 < s > : (34)
Uk+1 Uk+2

4.2 Top boundary and bottom boundary

For the displacemernii;, which occurs at the boundary between air and soil, the boundary
conditions are assumed to be of von Neumann type. The bottom boundary is assumed to be
a half space, so we need some considerations to handle its semi-infinity. The discussion is
restricted to the unloaded case, as the half space can always be assumed unloaded - be it
by introducing a virtual layer boundary. Physical principles for the wave front are applied,and
Sommerfeld conditions are included. By assuming that for a monofrequent wave with angular
frequency?, the wave fronk,;z+¢t = 0 should always travel downward with time, this gives

z z Q

g Z) = — — i) <0.

: Re(t) Re</€i> >0 < Re(Qk;) < 0 (35)
This is interpreted as a condition for the eigenvaligghe coefficient; must be zero ik;
does not fulfill the condition above. As; = (+v/)\;) for i = 1,2, 3, this eliminates three
eigenvalues. As a half space has no lower boundary, the ma®i¢es,, and K, shrink to
size3 x 3. At the bottom layer, this yields

Kn—l,d( uilil > = Kyty. (36)



4.3 Synthesis

Again, a system of: layers is considered, including theth one, which is assumed to be
loaded. Putting together the results, the equation to be solved is established defining the su-
pervectoU := (i, ...,4,)’ (consisting of all displacement vectors). So, it delivers a linear
equationLU = V, whereL is ann x n block band matrix witt3 x 3 blocks, and/’ has6
nonzero components.

4.4 Obtaining the grids

With the solutionU it is possible to compute the stress vector as well as the displacement
vector at arbitrary points. Extending the definition@f= andp yields

) ds
0.:) = (Wasowlinalc=5) @)
(i=1,....6)
— . ds
Es(z) = (Hs,i‘l’s,z‘ eXP(JHs,z‘(Z—2))> : (38)
(i=1,....6)
(39)
" . (epiexp(jri(dp — 2)))i=1,..6) If 2z<dp
ps(z) = { 0 2> d, . (40)

for the layer with indexs and for0 < z < d,. The formulas for the displacement vector
u(kz, ky, z, w) and the stress vectet(k,, k), z, w) take the form

Us(kxa ky> Z) = @s(z)(ch,s "’ﬁs(z))a US(kx> kya 2) = ES(Z)(Ch,S +ﬁ8(2)) (41)

as mentioned in Eq. (19). The coefficients; andé, arecy, s = ©; 14y, from Eq. (23). Of
courseps(z) = 0 for unloaded layers.

By implementing a grid in the z-direction, the four dimensional grid
(ks iy, kziq, 2is,wi,) Can easily be derived by evaluating the valueszofA Fourier
back transform ink, and k, finally yields a grid u(z;,,yi,, 2i;,wi,) respectively
o (Tiy s Yiy, Zig, wiy ), 1 < i1,12,13,74 < n, Which was the intended result.

5 COMMENTS ON TESTING AND IMPLEMENTATION

5.1 Acceleration technique

In order to accelerate the computation, the appearing coefficients are computed in dependency
of Guy, Gz VayiVaa, By E,, andd of the various layers, as they do not depend on the
considered grid point. For the determinant&f20 coefficients of double precision have to

be computed and saved, and 3 more coefficients for the méitself. The symmetries stated

in observation are used to accelerate the computation as followsy Let (k,, ky, k., w) be

an arbitrary pointp; := (—kz, ky, k., w) andpy := (ky, —ky, k., w). With

X(p1) = Ex(X)X(po), X(p2) = Ey(X)X(po), (42)
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Figure 2:

Left: The relative error of displacements for a four layer system, computed on various points
of the (k,, k) € [—10,10] x [—10, 10] plane forw = 10000.0;

Right: Difference between a four layer system and the same system split within the first layer.
(calculated for{w = 10000.0, k, ky, € [—10,10] x [-10, 10]))

appropriate transforming matricés, (X ), £,(X) can be found forX = «, ¥,Z,,=. Trans-
forming matrices forM, L, U can be found provided the load vector is a standard normal
vector.

5.2 Testing the model

The model is tested in two ways; first, the correctness of the calculations is checked by running
a symbolic computation software with the data, and comparing the results to the ones of the
C++ program.

Numerical Accuracy For a system of random layers with realistic parameters, accuracy up
to the fifth decimal position is detected. See Figure 2 for the results. The computations
were done using MAPLE 9.5.

Physical consistencyThe second test is checking physical consistency. For a system of lay-
ers, the solution is computed. By introducing a virtual layer boundary at a random
depth, one layer is split in two with identical material parameters. The solution of the
new system is computed. The results must coincide at the layer boundaries (if the the
virtual layer boundary in the second system is ignored). See Figure 3 for the results.

6 CONCLUSIONS

The model is designed for a layer structurexdéyers consisting of orthotropic media, with a
halfspace as the lowest layer. The wave propagation in soil is modelled using a Fourier Trans-
formation, yielding a polynomial operator. The general solution within one layer is calculated
by means of Linear Algebra, and back Fourier transformed to handle the boundary conditions.
Some additional considerations allow the case of the loaded layer to be handled; the other spe-
cial cases - top and semi-infinite bottom layer - can be easily handled as well. The balances



at the layer boundaries deliver equations for the displacement vectors at the layer boundaries.
Thus, the stress and displacement vectors can be calculated at arbitrary points in the soil. The
model presents a more realistic approach, as it incorporates the orthotropic behavior of soils.
It showed high accuracy in algebraic as well as in physical tests. Moreover, the calculations
are merely decoupled, so the model is excellently suitable for parallelization.

The problems the model has to deal with are merely caused by the fact that the soil parameters
are in general not determined well enough. Empiric tests as well as future research will focus
on that, promising attempts have already been made[6] and can probably be applied.
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