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1 ABSTRACT

In order to assess and prevent noise emmission in the environment of traffic routes, prognosis
models for wave propagation are of interest for many applications.Guided by experience in
railway traffic simulation, this paper introduces a new model for wave propagation and sim-
ulation in layered orthotropic media. The model uses a component-wise Fourier transform to
obtain the general solution within one layer; then, balances at layer boundaries are used to
obtain a grid of stress / displacement vectors.The accuracy of the model is tested, and results
are presented. Some ideas on implementation and acceleration are presented as well.
PACS Code:4320Bi Mathematical theory of wave propagation (linear acoustics)

2 INTRODUCTION

The simulation of vibrations induced by machinery and traffic has become of increasing con-
cern within the last decades, due to frequent construction of high speed trains and mass rapid
transport systems [1]. Theoretical studies on the propagation of waves in anisotropic layered
media have been an important field of research for many years, and have been of particular
use for applications in geophysics and seismology [2, 3]. Therefore, much research has been
done on wave propagation in anisotropic layered media [4], however, layered orthotropic me-
dia has rarely been focused upon. In order to derive a suitable model for applications, this
paper assumes the soil to consist of orthotropic layers, and an orthotropic halfspace bounding
from below. Waubke [5] has also suggested extensions and developments for this model in
earlier papers.

This paper draws these ideas together, and offers some concrete numerical results. In
the first section, a model of wave propagation is derived by Fourier transform of the classical
wave equation. The model is based on a Fourier transform of the wave equations, resulting in
a system of polynomial equations. Backward transformation in the vertical direction is used to
handle the boundary conditions. The balance of stresses and displacements at the layer bound-
ary delivers a system of linear equations, yielding the stress and displacement level at the layer
boundaries as functionŝu(kx, ky, z, ω) andσ̂(kx, ky, z, ω). Thus, the displacement and stress
levels can be calculated at arbitrary points(kx, ky, z, ω); backward Fourier transform yields
a grid in(x, y, z, ω).This model applied to a system of layers gives a transport matrix for the
layer boundaries. It yields a system, established in section 3, whose solution permits the com-
putation of stress and displacement levels at arbitrary points within the media. The advantage
of this approach is its numerical stability, which permits the calculation of displacement and
stress levels for large distances from the point of excitation. At first, the focus lies on one layer
and the equations describing the process are derived. The strain vectorε is a vector of local



derivatives of the displacement vectoru, denoted byε := D(∂x, ∂y, ∂z)u. The soil is assumed
to consist of n orthotropic layers with widthsd1, . . . dn. For each layer, the following parame-
ters are needed: item the shear modulusGxy, Gyz, Gzx, the Young’s modulusEx, Ey, Ez, the
Poisson ratiosνxy, νyz, νzx, the densityρ and widthd. Additionally, homogenous behavior in
the horizontal directions is assumed:Ey = Ex, Gyz = Gzx, andνyz = νzx hold. The stress
vectorsσ can be computed as they correspond withε via the elasticity matrix,σ = Eε; the
matrixE isof block diagonal form with
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, E22 := diag(2Gxy, 2Gzx, 2Gzx) (1)

The equilibrum of forces leads to the equation(∂x, ∂y, ∂z)
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whereb is some external force. As Eq. (2) is linear in(ux, uy, uz), arbitrary solutions can be
calculated by finding the homogenous and particular components of the solution. We denote
the Fourier transform̂f of a functionf(α) by Fα,kα(f)(kα) The Fourier back transform is
denoted byF−1

kα,α.The displacement vectoru := u(x, y, z, t) is Fourier transformed in all
directions:

û(kx, ky, kz, ω) := Fx,kx

(
Fy,ky (Fz,kz (Ft,ω (u)))

)
(kx, ky, kz, ω). (3)

Thus, the Differential operator D is substituted by the polynomial operatorD̂. Simple equa-
tions are obtained, expressing the link of the transformed displacement vector and the trans-
formed stress vector:̂σ = Eε̂ = ED̂û, whereD̂ = D̂(kx, ky, kz) is the transformed differ-
ential operatorD. Note thatED̂ is symmetric. The wave equation takes the form

B̂ED̂û + ρω2û =: Âû = b̂. (4)

Nontrivial homogenous solutions exist in the case whendet(Â)(kx, ky, kz, ω) = 0. In order
to cope with the boundary conditions, it is useful to implement a grid in(kx, ky, ω). Therefore
kx, ky, ω are treated as constants, and are omitted in some cases, for better readability.

3 DERIVING THE EQUATIONS

3.1 The general form of a solution

Note that the matrix̂A has some symmetry properties, which we will stress in the subsequent
calculations. The conditiondet(Â) = 0 is necessary for solutions of̂Aû = 0, û 6= 0 to ex-
ist. So, the next task is to compute the values ofkz such thatÂ is singular. The values with
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det(Â(kz)) = 0 are called eigenvaluesκ by abuse of notation, the vectors of the correspond-
ing kernels are called eigenvectors, denoted byΨ differing from the mathematical definition.
The polynomial is of degree 6 without odd powers ofkz, and so the substitutionλ = k2

z is
justified, reducing the degree of the considered polynomial to 3 at the same time reducing
calculation effort. Note that the homogeneous solutionsuh andσh are nontrivial forkz = κi

for i = 1, . . . , 6 such that the homogeneous solutionuh and the corresponding stress function
σh take the form

ûh(kz) =
6∑

i=1

ch,iΨiδ(kz − κi), σ̂h(kz) =
6∑

i=1

ch,iED̂(κi)Ψiδ(kz − κi) (5)

for arbitrary coefficientsch,i for 1 ≤ i ≤ 6. We defineH(kx, ky, κi, ω) := ED̂(kx, ky, κi, ω)
for better readability, and writeH(κi) =: Hi for the sake of simplicity. Some properties of
the eigenvalues can be derived directly from the structure ofÂ; let Ψ(kz) be an eigenvector
of Â(kz). The symmetry ofÂ yields

A(kz) = ET
3 A(−kz)E3 for E3 = diag(1, 1,−1). (6)

Using this, the eigenvectorΨ(−kz) can be obtained fromΨ(kz) by changing the sign of the
third component. The effort of the eigenvector calculation is reduced to the half thus. In order
to simplify the notation, the eigenvalues and eigenvectors are numbered respectively; so, let
κi be thei-th eigenvalue of̂A, andΨi the corresponding eigenvector, for1 ≤ i ≤ 6.
As the model assumes the media to be layered with respect to thez-direction, it is necessary
to evaluate the displacement vectors at specific values forz. Therefore,̂u is transformed back
over thez direction,

ũ(kx, ky, z, ω) = F−1
kz ,z(û(kx, ky, kz, ω))(z). (7)

Equations for̃u are derived by performing the transformation. Any homogeneous solutionũh

can be expressed as a linear combination of the eigenvectorsΨi; For the homogeneous part
ũh of the displacement vector, and the homogeneous part of the stress vectorσ̃h this yields
with Eq. (5)

ũh =
6∑

i=1

ch,iΨi exp(jκiz), σ̃h =
6∑

i=1

ch,iH(κi)Ψi exp(jκiz), (8)

By variation of constants ansatz, the general form of the solution can be expressed as

ũ =
6∑

i=1

(ch,i + cp,i(z))Ψi exp(jκiz), σ̃ =
6∑

i=1

(ch,i + cp,i(z))HiΨi exp(jκiz) (9)

for z-dependent coefficientscp,i(z) from a particular solution.



Figure 1: Treatment of a loaded layer: the layer is split by a virtual layer boundary, at the
depth of the impact.

3.2 Calculation of stress and displacement vector at layer boundaries

In order to derive the equations for the particular solution, a discrete impact at at depthd inside
a layer is assumed. Concretely, the impact at a point(x0, y0, z0, t0) with constant directionf
is assumed in the form

p(x, y, z, t) = δ(x− x0)δ(y − y0)δ(z − z0)δ(t− t0)f. (10)

The Fourier transform is applied on thep(z). This yields

p̂(kx, ky, kz, ω) = exp(j(x0kx + y0ky + z0kz + t0ω))f. (11)

As the model is invariant to translation, the origin of the coordinates(x, y, z, ω) is set to the
point of impact, so that̂p = f. Note that if the origin is assumed in the middle of the layer, a
transformation factorexp(zp) is yielded (see Figure 1). A Fourier backward transform gives
p̂ as right hand side of Eq. (4). It is to be taken into account that the balance of stresses only
holds for the components that act at the interface of the layer boundary. Thus, and by Eq. (??),
only the components3, 5 and6 are important for the stress balance equations. So, the vectorσ̃

is reduced to dimension 3 by dropping the other components. To be exact, the reduced matrix
Hr is defined consisting of the third, fifth and sixth column ofH; H is replaced byHr in Eq.
(8).
A layer with widthd is considered, loaded with an impact vectorp̂ in depthdp. The layer

is split at the depth of the impactdp, and two layers with identical material parameters are
derived. The lower virtual layer is treated as an unloaded layer. For the upper virtual layer
let ũu(kx, ky, z = −dp, ω) andũm(kx, ky, z = 0, ω) be the transformed displacement at the
upper and lower boundary, respectively. For the lower virtual layer, letũn be the displacement
vector at the upper boundary andũd the one at the lower boundary. Evidently,ũm = ũn holds.

ũu =
6∑

i=1

aiΨi exp(−jκidp), σ̃u =
6∑

i=1

aiHr,iΨi exp(−jκidp) (12)

ũm =
6∑

i=1

aiΨi, σ̃m =
6∑

i=1

aiHr,iΨi (13)
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ũn =
6∑

i=1

biΨi, σ̃n =
6∑

i=1

biHr,iΨi, (14)

ũd =
6∑

i=1

biΨi exp(jκi(d− dp)), σ̃d =
6∑

i=1

biHr,iΨi exp(jκi(d− dp)). (15)

The equations for displacements and stress at the point of impact can be established now. As
mentioned above,un andum equate to each other. The stress vectorsσ̃r,m and σ̃r,n at the
virtual layer boundary differ bŷp. The coefficient vectora andb consist of homogenoeous
and particular part,a = ah + ap, b = bh + bp. The homogeneous parts equate to each other,
ah = bh. This can easily be verified by setting the load vector to zero. The particular part
bp = 0 as the lower virtual layer is treated as an unloaded layer. The particular partap has to
satisfy

ũp,m =
6∑

i=1

ap,iΨi = 0, σ̃p,m =
6∑

i=1

ap,iHr,iΨi = p̂. (16)

This givesap as the solution of a linear equation

Map = p̂0 with M :=
(

Ψi

Hr,iΨi

)
(i=1,...,6)

, p̂0 :=
(

0
p̂

)
. (17)

The layers are unified again. The coefficient of the displacements and stresses of the
unified layers are denoted byc = ch + cp. The particular component of the solution is given
by cp = ap = M−1p̂0. For the displacement and stress vectors at the layer boundaries it is to
be taken into account that the origin is set to the middle of the layer. This yields a correction
factorexp(jκizp) for the partial components. For an arbitraryz within the layer boundaries,
the stress vectorσ(z) and the displacement vectorũ(z) is thus computed

ũ(z) =
6∑

i=1

(ch,i + cp,i exp(jκizp))Ψi exp(jκi(z −
d

2
)), (18)

σ̃(z) =
6∑

i=1

(ch,i + cp,i exp(jκizp))Hr,iΨi exp(jκi(z −
d

2
)). (19)

The factorsexp(−jκi(z − d/2)) are derived from the backward Fourier transform of the
i-th component for the upper layer boundary (compare with Eq. (8)); as a consequence,
exp(±1

2jκid) arise componentwise for the layer boundaries, andexp(jκizp) for the particu-
lar solution. The matricesΘ andΞ, as well as the vector̃p, are defined as follows, in order to
express the displacements and stresses at the layer boundaries:

Θ :=
(

Θu

Θd

)
:=

(
Ψi exp(−1

2jκid)
Ψi exp(1

2jκid)

)
(i=1,...,6)

(20)

Ξr :=
(

Ξr,u

Ξr,d

)
=

(
Hr,iΨi exp(−1

2jκid)
Hr,iΨi exp(−1

2jκid)

)
(i=1,...,6)

(21)

p̃ := (cp,i exp(jκizp))(i=1,...,6) (22)



This yields

ũ =:
(

ũu

ũd

)
= Θch +

(
Θup̃

0

)
= ũh + ũp, (23)

σ̃r =:
(

σ̃r,u

σ̃r,d

)
= Ξrch +

(
Ξr,up̃

0

)
= σ̃r,h + σ̃r,p. (24)

Substitutingch = Θ−1(ũ− ũp) into the stress equations, and definingK := ΞrΘ−1, it holds
that

σ̃r = ΞrΘ−1(ũ− ũp) + σ̃r,p = Kũ−Kũp + σ̃r,p, (25)

for a loaded layer.The case for an unloaded layer is even simpler, and can easily be deduced
from the general case by setting the partial component to zero. Letũu andũd be the displace-
ments at the top and bottom boundary of an unloaded layer, respectively, andσ̃u andσ̃d the
according stress vectors, andK the matrix as above, calculated from the layer data. By setting
the partial components to zero in Eq. (25), the equation(

σ̃r,h,u

σ̃r,h,d

)
= K

(
ũu,h

ũd,h

)
(26)

is derived. As the layer is unloaded, the displacement and stress vectors only consist of their
homogeneous part, and the indexh can be omitted.

4 BALANCE AT LAYER BOUNDARIES

Now, a system ofn layers is considered. For thei-th layer , let the matricesci,Θi, Ξi, Hi,
Ki denote the matrices defined in the section before, evaluated for thei-th layer. The layers
are numbered in the canonical way, such thatũ1 is the displacement at the upper boundary
of the first layer, and̃un+1 is the transformed displacement vector at the lower boundary of
the lowest layer. The stress vectors are sometimes denoted alternatively asσ̃i,u = σ̃i, if it
provides better readability that way. The indexr is dropped inσr,Ξr etc., as the full stress
vector will not be considered in this section.
For unloaded layers, the balance of stresses is established by equating the stress term on the
lower boundary of layeri with the stress term for the upper boundary of layeri + 1 (note that
ũd,i = ũi+1 = ũu,i+1). This yields

Ki,d

(
ũi

ũi+1

)
= Ki+1,u

(
ũi+1

ũi+2

)
(27)

4.1 Boundaries of loaded layers

The layerk is assumed to be loaded. Let the indicesh andp denote the homogeneous and the
particular part of the solution. By Eq.s (??) and (24), both the homogeneous and the particular
component of the stress vector is computed as

σ̃p,k =
(

Ξk,up̃k

0

)
, (28)
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σ̃h,k = Ξkck = ΞkΘ−1
k ũh,k = Kkũh,k = (29)

=:
(

Kk,u

Kk,d

)
ũh,k =:

(
Kk,uu Kk,ud

Kk,du Kk,dd

)
ũh,k. (30)

The stress vectors at the layer boundaries equate in the same way, up to the partial component
of the solution. With̃σk,u = σ̃k−1,d it holds that

σ̃k−1,d = σ̃k,u = σ̃h,k,u + σ̃p,k,u, (31)

and as the stress vector at the upper boundary takes the formσ̃k,u = Ξk,u(ck + p̃k) (see Eq.
(29)), the balance of stresses at the upper loaded boundary takes the form

Ξk−1,dck−1 = Ξk,u(ck + p̃k) (32)

and leads to

Kk−1,d

(
ũk−1

ũk

)
= Kk,u

(
ũk

ũk+1

)
−Kk,uuũp,k + σ̃p,k,u. (33)

after substitutionci = Θ−1
i (ũi − ũp,i) for i = k − 1, k. The vector̃up,k is equivalent tõup

from Eq.(23), and̃σp,k,u is equivalent tõσr,p from Eq. (24), for thek-th layer. For the lower
boundary, sincẽσk,d = σ̃k+1,u, this yields

Kk,d

(
ũk

ũk+1

)
+ Kk,duũp = Kk+1,u

(
ũk+1

ũk+2

)
. (34)

4.2 Top boundary and bottom boundary

For the displacement̃u1, which occurs at the boundary between air and soil, the boundary
conditions are assumed to be of von Neumann type. The bottom boundary is assumed to be
a half space, so we need some considerations to handle its semi-infinity. The discussion is
restricted to the unloaded case, as the half space can always be assumed unloaded - be it
by introducing a virtual layer boundary. Physical principles for the wave front are applied,and
Sommerfeld conditions are included. By assuming that for a monofrequent wave with angular
frequencyΩ, the wave frontκiz+Ωt = 0 should always travel downward with time, this gives

z

t
= Re

(z

t

)
= −Re

(
Ω
κi

)
> 0⇔ Re(Ωκi) ≤ 0. (35)

This is interpreted as a condition for the eigenvaluesκi; the coefficientci must be zero ifκi

does not fulfill the condition above. Asκi = (±
√

λi) for i = 1, 2, 3, this eliminates three
eigenvalues. As a half space has no lower boundary, the matricesΘn,Ξn andKn shrink to
size3× 3. At the bottom layer, this yields

Kn−1,d

(
ũn−1

ũn

)
= Knũn. (36)



4.3 Synthesis

Again, a system ofn layers is considered, including thek-th one, which is assumed to be
loaded. Putting together the results, the equation to be solved is established defining the su-
pervectorU := (ũ1, . . . , ũn)T (consisting of all displacement vectors). So, it delivers a linear
equationLU = V, whereL is ann × n block band matrix with3 × 3 blocks, andV has6
nonzero components.

4.4 Obtaining the grids

With the solutionU it is possible to compute the stress vector as well as the displacement
vector at arbitrary points. Extending the definition ofΘ, Ξ andp̂ yields

Θs(z) :=
(

Ψs,i exp(jκs,i(z −
ds

2
))

)
(i=1,...,6)

, (37)

Ξs(z) :=
(

Hs,iΨs,i exp(jκs,i(z −
ds

2
))

)
(i=1,...,6)

, (38)

(39)

p̂s(z) :=
{

(cp,i exp(jκi(dp − z)))(i=1,...,6) if z ≤ dp

0 z > dp
. (40)

for the layer with indexs and for0 ≤ z ≤ ds. The formulas for the displacement vector
u(kx, ky, z, ω) and the stress vectorσ(kx, ky, z, ω) take the form

us(kx, ky, z) = Θs(z)(ch,s + p̃s(z)), σs(kx, ky, z) = Ξs(z)(ch,s + p̃s(z)) (41)

as mentioned in Eq. (19). The coefficientsch,s and ĉs arech,s = Θ−1
s ûh from Eq. (23). Of

course,̃ps(z) = 0 for unloaded layers.
By implementing a grid in the z-direction, the four dimensional grid

ũ(kx,i1 , kx,i2 , zi3 , ωi4) can easily be derived by evaluating the values ofz. A Fourier
back transform inkx and ky finally yields a grid u(xi1 , yi2 , zi3 , ωi4) respectively
σ(xi1 , yi2 , zi3 , ωi4), 1 ≤ i1, i2, i3, i4 ≤ n, which was the intended result.

5 COMMENTS ON TESTING AND IMPLEMENTATION

5.1 Acceleration technique

In order to accelerate the computation, the appearing coefficients are computed in dependency
of Gxy, Gzx, νxy,νzx, Ex, Ez, and d of the various layers, as they do not depend on the
considered grid point. For the determinant ofÂ, 20 coefficients of double precision have to
be computed and saved, and 3 more coefficients for the matrixÂ itself.The symmetries stated
in observation are used to accelerate the computation as follows. Letp0 := (kx, ky, kz, ω) be
an arbitrary point,p1 := (−kx, ky, kz, ω) andp2 := (kx,−ky, kz, ω). With

X(p1) = Ex(X)X(p0), X(p2) = Ey(X)X(p0), (42)
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Figure 2:
Left: The relative error of displacements for a four layer system, computed on various points
of the(kx, ky) ∈ [−10, 10]× [−10, 10] plane forω = 10000.0;
Right: Difference between a four layer system and the same system split within the first layer.
(calculated for(ω = 10000.0, kx, ky ∈ [−10, 10]× [−10, 10]))

appropriate transforming matricesEx(X), Ey(X) can be found forX = κ, Ψ,Ξr,Ξ. Trans-
forming matrices forM , L, U can be found provided the load vector is a standard normal
vector.

5.2 Testing the model

The model is tested in two ways; first, the correctness of the calculations is checked by running
a symbolic computation software with the data, and comparing the results to the ones of the
C++ program.

Numerical Accuracy For a system of random layers with realistic parameters, accuracy up
to the fifth decimal position is detected. See Figure 2 for the results. The computations
were done using MAPLE 9.5.

Physical consistencyThe second test is checking physical consistency. For a system of lay-
ers, the solution is computed. By introducing a virtual layer boundary at a random
depth, one layer is split in two with identical material parameters. The solution of the
new system is computed. The results must coincide at the layer boundaries (if the the
virtual layer boundary in the second system is ignored). See Figure 3 for the results.

6 CONCLUSIONS

The model is designed for a layer structure ofn layers consisting of orthotropic media, with a
halfspace as the lowest layer. The wave propagation in soil is modelled using a Fourier Trans-
formation, yielding a polynomial operator. The general solution within one layer is calculated
by means of Linear Algebra, and back Fourier transformed to handle the boundary conditions.
Some additional considerations allow the case of the loaded layer to be handled; the other spe-
cial cases - top and semi-infinite bottom layer - can be easily handled as well. The balances



at the layer boundaries deliver equations for the displacement vectors at the layer boundaries.
Thus, the stress and displacement vectors can be calculated at arbitrary points in the soil. The
model presents a more realistic approach, as it incorporates the orthotropic behavior of soils.
It showed high accuracy in algebraic as well as in physical tests. Moreover, the calculations
are merely decoupled, so the model is excellently suitable for parallelization.
The problems the model has to deal with are merely caused by the fact that the soil parameters
are in general not determined well enough. Empiric tests as well as future research will focus
on that, promising attempts have already been made[6] and can probably be applied.
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