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Abstract 
This paper presents the results of a dynamic analysis performed on a steel overhead 
transmission line tower crossing Guamá River, located in Eastern Amazon Region, Brazil. 
Lying in the left margin of the river, the steel latticed tower measures, approximately, 75 
meters of height and supports six conductors which cross two spans of about 800 meters long. 
To investigate the dynamic behaviour of this structure, an experimental modal analysis was 
performed by using a set of low-frequency piezo-resistive (ICP) accelerometers suitably 
installed in two cross sections along the height of the tower. 
Since it is very difficult to measure the magnitude of wind excitation, an output-only modal 
analysis method based on stochastic subspace identification (SSI) was employed, instead of 
conventional input-output modal analysis identification methods, to extract the 
eigenfrequencies, and corresponding damping ratios and mode shapes of the tower. This 
method showed to be efficient for identification of such structure as it was capable detect two 
close-spaced modes around 1.8 Hz. A further comparison between the experimental and the 
theoretical dynamic behaviour showed that, due to the simplifications in modelling the 
cables, they are in good agreement only for the first three from a total of eight analysed 
modes of vibrations. 
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1 INTRODUCTION 

The interest on the structural behaviour of the electrical transmission line system has 
been increased in the latest decades in Brazil, since their infrastructure has become 
older. In Amazon region, for instance, where these infrastructures overcome great 
obstacles such as the rainforest and large rives crossings, cases of collapse of the 
latticed towers have been occurred due to wind gusts. One of the most notorious of 
these cases was the collapse of one of the towers placed at Tapajós River crossing, 
located in the western of the state of Pará, Brazil. A 160 meters high tower became 
collapsed after the exceptionally violent wind gusts, leading to interruption of the 
energy supply.  

2 DESCRIPTION OF THE STRUCTURE 

Measuring 75 meters high, the free stand type tower is composed by steel bars with 
“L” shaped sections and lies at the left margin of Guamá River. Together with two 
neighbour towers, one of them standing in the middle and the other in the right 
margin of the river, that left margin tower supports six conductor cables that cross 
two spans of about 800 meters, figure 1. Other studies on the ambient induced 
vibration of latticed structures in Amazon region are found, for instance, in [6]. 
 

Figure 1 – Overhead electrical transmission line tower at the left margin of the Guamá River. 

3 EXPERIMENTAL MODAL ANALYSIS 

With six low frequencies accelerometers suitably installed in the structure as the setup 
showed in figure 2, an experimental modal analysis was performed. The time 
histories signals showed in figure 3 were processed in SISMEC (System for Output-
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only Modal Analysis of Civil Engineering Structures), which is a GUI toolbox 
developed in MATLAB platform for an output-only experimental modal analysis. 
The theory behind this application can be found in [1], [2] and [3], and was 
implemented in a M. Sc. project. 

3.1 Stochastic state-space model 

Since input information is not available in an output-only vibration experiment, it is 
not possible to distinguish between the input ku  and noise, though these components 
are substituted by the stochastic components kw  and kv , yielding the following 
stochastic state-space model in discrete time: 
 

 1k d k k
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For system identification purposes, a suitable way to gather the output data signals of 
a vibration experiment is to assemble a block Hankel matrix, scaled by N , with 
2i rows and N columns. 
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This matrix is divided into two blocks rows ref

pY  and fY . The first ri rows gathers past 
reference output data and second li rows holds the future output data. The index r 
refers to the number of reference sensors, and l denotes the number of all sensors used 
in the vibration experiment. An extended absorbability matrix is defined as: 
 
 { }2 1( ) ( ) ( )

TT T T i T
iO C CA CA CA −=  (3) 

 
This is a li x n matrix where A is the state matrix and C is the output matrix. The 
index n denotes the model order, and the pair {A, C} is assumed to be observable, 
which means that the modal parameters are observed in the output data of a vibration 
experiment [1]. 
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3.2 Data-driven stochastic subspace identification (SSI-DATA) method 

The experimental modal analysis of the latticed structure crossing Guamá River was 
performed by using the SSI-DATA method. The advantages of this method lie upon 
the innovations proposed by [1] and [2], where projection of the future outputs into 
the row space of the past outputs is the key step. In this section, only a brief 
description of the SSI-DATA method is showed. Further details are found, for 
instance, in [7]. 

3.2.1 Kalman Filter States 

Through the definitions of Kalman filter, a state input vector 1ˆkx +  is estimated from 
the observations of the output data up to time k [1]. More details about Kalman states 
can be found, for instance, in [1] and [2]. These estimates are gathered to assemble 
the Kalman filter estates sequence ˆ

iX . 
 
 1 1

ˆ ˆ ˆ ˆ( )i i i i jX x x x+ + −≡ "  (4) 

3.2.2 Implementation 

The implementation of SSI-DATA method begins by factorizing the Hankel matrix 
(2) into a QR product. 
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Where Q is an orthonormal matrix, and R is a lower triangular matrix. 
 

 

11 1

21 22 2

31 32 33 3

41 42 43 44 4

( 1)

0 0 0
0 0

0
( 1) ( 1)

T

T

T

T

ri r l r l i j

ri R riQ
r R R rQ

H
l r R R R l rQ

l i R R R R l iQ

− − →∞
↔ ↔ ↔ ↔ ↔

  
  
  =   − −    − −   

7 7
7 7
7 7
7 7

 (6) 

   
The introduction of projection of the row space of future outputs onto the row space 
of the past reference outputs in equation (7) is the key step towards SSI-DATA 
method. 
 †/ ( )

T Tref ref ref ref ref
i f p f p p p pY Y Y Y Y Y Y≡ ≡P  (7) 

 
The main theorem of stochastic subspace identification [3] shows that this projection 
can be factorized into the observability matrix (3) and the Kalman filter state 
sequence (4). 
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These factors can also be determined through the employment of SVD on the 
projection. 
 1/ 2 †
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The definition of another projection from the shifted past and future outputs is needed 
for calculation of the system matrices A and C. 
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Similar to equation (8), this new projection can be factorized as: 
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Where 1iO −  is determined by deleting the last l rows of iO . The shifted Kalman filter 
state sequence 1

ˆ
iX +  is computed as: 
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Where †( )• denotes de Penrose inverse of a matrix. 
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Where |i iY  matrix is calculated by extracting the intermediate l block rows from the 
Hankel matrix (6). 
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As wρ and vρ are the residuals uncorrelated with ˆ
iX , the system matrices A and C are 

calculated by solving the over determined system of equations (15) in a least-squares 
sense. 
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Finally, the computation of the discrete poles dΛ  and the corresponding observed 
mode shapes is accomplished through the eigenvalue decomposition of the matrix A. 
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 ;dA V C= ΨΛ Ψ = Ψ  (16) 

3.3 Data Acquisition 

In the vibration experiment of the transmission line tower six piezo-resistive 
accelerometers were used to measure acceleration. The sensors were suitably installed 
in two cross sections along the height of the tower. These sections are denoted as A 
and B as showed in figure 2. 
 

   
(a) Elevation (front) (b) Elevation (side) (c) Cross sections of the tower 

Figure 2 – Location of the accelerometers along the height of the tower 

The structure was continuously monitored for five hours during a windy day at a 
sampling rate of 100 Hz. The collected data was filtered out by a digital Chebyshev 
type low-pass filter [7] with a cutoff frequency of 5 Hz, and re-sampled at a lower 
frequency of 12.5 Hz. A typical filtered time data signal and its corresponding 
spectrum are showed in figure 3. 

A stability diagram [4] was constructed by ranging the model order from 2 to 80, and 
using the sensors B1 and B2 as references. The natural frequencies, damping ratios 
and corresponding mode shapes were easily determined by moving the mouse cursor 
over the stable poles. An illustration of the identification procedure and a detail of 
two close-spaced modes around 1.8 Hz are showed in figure 4. 

The mean values of eigenfrequencies and damping ratios, and their corresponding 
standard deviations are showed in Table 1. These values are estimated for each mode 
from a sample of 10 stable poles selected from the stability diagram. 
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Figure 3 – Example of a typical measured signal and its corresponding spectrum 

 

 
 

Figure 4 – Stabilization plot. The criterias are: 1% for frequencies, 2% for damping ratio, 
1% for vectors (MAC). The used symbols are: ⊕  - stable pole; .v - stable frequency and 

vector; .d – stable frequency and damping; .f – stable frequency. 

The estimated mean values of eigenfrequencies and damping raios, and their 
respective standard deviations for the first eight modes are showed table 1, as well as 
the theoretical eigenfrequencies from the FE analysis. 
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Table 1 – Mean values of the eigenfrequencies, damping ratios and standard deviations 

SSI-DATA results FE results 
Eigenfrequencies  Damping ratios Mode 
( )f Hz  ( )f Hzσ (%)ζ  (%)ζσ

Eigenfrequencies 

1 1,666 0,007  0,1801 1,9707 1,693 
2 1,798 0,005 0,0820 0,1611 1,781 
3 1,847 0,001 0,0435 0,0755 1,828 
4 2,147 0,003 0,0741 0,2682 3,244 
5 2,774 0,002 0,0685 0,0881 3,519 
6 2,936 0,003 0,0743 0,1269 3,634 
7 3,094 0,006 0,1223 0,3554 3,987 
8 3,829 0,001  0,0335 0,0320 4,146 

4 CONCLUSIONS AND FURTHER INVETIGATIONS 

Although the experimental and FE modal parameters did not match for the last five 
modes, the structure showed to have similar dynamic behaviour in both analysis for 
the first three modes at which these parameters were in good agreement. An 
important aspect concerning these discrepancies is that only the estimated mass of the 
conductor cables was introduced in this FE model at their supporting joints, whereas 
the corresponding stiffness was considered in this primary model. A new FE model 
considering the stiffness and large displacements of the cables by using the co-
rotational formulation [5] is under creation for a more accurate investigation. 
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