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Abstract
In this contribution state-of-the-art frequency-domain modal parameter estimators will be pre-
sented. In experimental modal analysis (EMA), mechanical systems with a few inputs and
hundreds of outputs have to be identified. This requires adapted frequency-domain estimators
designed to handle large amount of data in a reasonable amount of time. Next, attention will be
paid to operational modal analysis, which is a complementary technique to traditional experi-
mental modal analysis. In operational modal analysis unknown operational forces are present.
It will be shown how the modal parameters can be estimated from output-only (OMA) as well
as input/output (OMAX) measurements done at operating conditions.

INTRODUCTION

The majority of structures can be made to resonate, i.e. to vibrate with excessive oscillatory
motion. Resonant vibration is mainly caused by an interaction between the inertial and elastic
properties of the materials within a structure. To better understand any structural vibration
problem, the resonant frequencies of a structure need to be identified and quantified. Today,
modal analysis has become a widespread means of finding the modes of vibration of a ma-
chine or structure. In every development of a new or improved mechanical product, structural
dynamics testing on product prototypes is used to assess its real dynamic behaviour. Starting
from simple techniques for trouble shooting, it has evolved to a ‘standard’ approach in me-
chanical product development. Beginning from the modal model, design improvements can
be predicted and the structure can be optimized. Based on the academic principles of system
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identification, experimental modal analysis helps the engineers to get more physical insight
from the identified models. Continuously expanding its application base, modal analysis is to-
day successfully applied in automotive engineering (engine, suspension, body-in-white, fully
trimmed cars, ...), aircraft engineering (ground vibration test, landing gear, control surfaces,
in-flight tests), spacecraft engineering (launchers, antennas, solid panels, satellites,...), indus-
trial machinery (pumps, compressors, turbines, ...) and civil engineering (bridges, off-shore
platforms, dams, ...).

Nevertheless, the current evolution in mechanical engineering towards the use of Com-
puter Aided Design (CAD) like Finite Element Models (FEM) results in a changing role for
testing [1], [2]. Today the optimization process in product development is under strong pres-
sure because of the competitive market, increasing customers’ demands and by consequence
the design cycle becomes shorter in time. This results in an increasing use of simulations
based on numerical models to reduce the number of prototypes and expensive experiments.
Still, testing plays an important and evermore critical role, in every step of the development
process for target setting, bench-marking and model updating. All this, together with the de-
creasing expertise of the users, since modal analysis have been transferred from the realm of
the research experts to the product development workfloor [3], makes that the demands for
modal parameter estimation algorithms still increase in terms of accuracy, speed, automation
and physical interpretation.

In this paper attention will be paid to the design of such dedicated frequency-domain
modal parameter estimators for experimental and operational modal analysis.

EXPERIMENTAL MODAL ANALYSIS

Experimental modal analysis (EMA) identifies a modal model from the measured forces ap-
plied to the test structure and the measured vibration responses. Typically the number of input
forces, Ni, ranges from 1 to 5 while the measured output, No, can be larger that 1000. This
results in the following modal model with dimension No ×Ni

H(s) =
Nm∑

m=1

ΦmLT
m

s− λm
+

Φ∗
mL∗Tm

s− λ∗m
(1)

with Φm ∈ CNo the mode shape vectors and Lm ∈ CNi the modal participation factors
[4, 5, 6]. Direct estimation of the modal parameters is not practical because the modal model
is strongly nonlinear in the parameters. Therefore, matrix-fraction descriptions are usually
preferred.

The Least-Squares Complex Frequency-domain (LSCF) approach

A scalar matrix-fraction description - better known as a common-denominator transfer func-
tion - will be used in this section. The frequency response function (FRF) between output o

and input i will be modeled as

Hoi(Ωk) =
Boi(Ωk)
A(Ωk)

(2)
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with Boi(Ωk) =
∑n

j=0 boijΩ
j
k the numerator polynomial between response o and input i and

A(Ωk) =
∑n

j=0 ajΩ
j
k the common-denominator polynomial. Several choices are possible for

the polynomial basis functions Ωk. A discrete-time model, Ωk = exp(iωkTs), will be used
(with Ts the sampling period).

Frequency response functions (FRFs) are commonly used as primary data in modal
analysis. Most often, modal tests take place in laboratory conditions, and so, the applied forces
can be measured together with the response of the structure (e.g., accelerations). Starting
from the measured FRFs, Ĥoi(ωk) (with o = 1, . . . , No, i = 1, . . . , Ni and k = 1, . . . , Nf ),
estimates of the transfer-function coefficients can be obtained by minimizing the following
least-squares cost function

` =
∑

o,i

∑

k

|Eoi(ωk)|2 (3)

with
Eoi(ωk) = A(Ωk)Ĥoi(ωk)−Boi(Ωk) (4)

For generality, a frequency-dependent weighting function, Woi(ωk), will be added [7]

Eoi(ωk) =
A(Ωk)Ĥoi(ωk)−Boi(Ωk)

Woi(ωk)
(5)

The Jacobian matrix is defined as J = ∂E/∂Θ with E = (ET
11,E

T
12, . . . ,E

T
NoNi

)T and Eoi =
(Eoi(ω1), . . . , Eoi(ωNf

))T and with parameter vector Θ = (bT
11,b

T
12, . . . ,b

T
N0Ni

,aT )T . The
dimension of the Jacobian matrix is NoNiNf×N with N = (NoNi+1)(n+1). As NoNiNf

can be quite large in modal analysis applications, the normal equations, N = JHJ, are im-
plicitly computed to reduce the matrix dimensions. The dimension of the square matrix N
equals N = (NoNi + 1)(n + 1).

It can be proven that cost function (3) can be written as

` =
∑

o,i

{
boi

a

}H [
Roi Soi

SH
oi Toi

]{
boi

a

}
(6)

with

Roi =
∑

k

ZH
k Zk

W 2
oi(ωk)

, Soi = −
∑

k

ZH
k ZkĤoi(ωk)
W 2

oi(ωk)
, Toi =

∑

k

ZH
k Zk|Ĥoi(ωk)|2

W 2
oi(ωk)

(7)

and Zk = [1, Ωk, Ω2
k, . . . ,Ω

n
k ]. In the minimum of the cost function, the derivative of (6) with

respect to boi should be zero, i.e.,

∂`

∂boi
= 2(Roiboi + Soia) = 0 (8)

Elimination of boi from (8) and substitution in (6) yields ` = aHDa with D an (n + 1) ×
(n + 1) matrix

D =
∑

o,i

Toi − SH
oiR

−1
oi Soi (9)



P. Guillaume, T. De Troyer, G. De Sitter, and C. Devriendt

Assuming that the last coefficient of Θ equals 1 (i.e. an = 1) yields the following least-
squares estimates

â =
{ −(D(1 : n, 1 : n))−1D(1 : n, n + 1)

1

}
(10)

and b̂oi = −R−1
oi Soiâ.

The poles, λm in (1), are obtained by computing the roots of the estimated denomina-
tor polynomial, with coefficients â. The mode shape vectors, Φm, and the modal participa-
tion factors, Lm, can be obtained from the estimated numerator coefficients, b̂oi, or form the
residue matrices, Rm ∈ CNo×Ni , occuring in

H(s) =
Nm∑

m=1

Rm

s− λm
+

R∗
m

s− λ∗m
(11)

These resudue matrices can be estimated in least-squares sense once the poles are known.
Next, the (rank one) residue matrices are decomposed into Rm = ΦmLT

m by means of a
singular value decomposion.

Remarks

• The dimensions of the reduced matrix (9) is much smaller than the original Jacobian
matrix. Moreover, when a discrete-time model is used (i.e., Ωk = exp(iωkTs) with
Ts the sampling period) the matrices Roi, Soi, and Toi becomes Toeplitz. This means
that only the first rows (and columns) of the matrices have to be computed. Further,
when the frequencies ωk, k = 1, . . . , Nf , are uniformly distributed, a discrete Fourier
transform can be used to compute these elements in a time efficient way [8, 9, 10].

• The above equations implicitly assume that the polynomial coefficients are complex
valued. Hence, when a common-denominator model is used, the order of the denomi-
nator polynomial n equals the number of estimated modes (n = Nm). For real-valued
coefficients the order n has to be doubled (n = 2Nm). An advantage of complex coeffi-
cients is that n is twice smaller that for real coefficients, and so, a better numerical con-
ditioning of the normal equations is obtained. It can be shown that the least-squares nor-
mal equations for real-valued coefficients are obtain by replacing the complex-valued
R, S, and T matrices by they real part, i.e., Re(R), Re(S), and Re(T).

The polyreference LSCF approach

Recently, a new non-iterative frequency-domain parameter estimation method was proposed.
This so-called polyreference least-squares complex frequency domain method (also known
as the PolyMAX estimator) can be implemented in a very similar way as the industry stan-
dard polyreference (time-domain) least-squares complex exponential method: in a first step
a stabilisation diagram is constructed containing frequency, damping and participation in-
formation. Next, the mode shapes are found in a second least-squares step, based on the
user selection of stable poles. The polyreference implementation is based on the (weighted)
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least-squares approach given in the previous section, but uses a right matrix-fraction descrip-
tion instead of a common denominator transfer function model. The poles, λm, together with
the modal participation factors, Lm, are obtained by reformulation det(A(Ωk)) = 0 into a
generalized eigenvalue problem, resulting in nNi eigenvalues (poles) and corresponding left
eigenvectors (modal participation factors).

One of the specific advantages of this technique lies in the very stable identification of
the system poles and participation factors as a function of the specified system order, leading
to easy-to-interpret stabilisation diagrams [11]. This implies a potential for automating the
method and to apply it to ‘difficult’ estimation cases such as high-order and/or highly damped
systems with large modal overlap [12]. The mode shape vectors can be obtained from the bj

coefficients or are found in a second least-squares step, based on the user selected stable poles
and corresponding modal participation factors. Indeed, when the poles and modal participa-
tion factors are known, the remaining parameters, i.e., the mode shape vectors Φm, appears
linearly in (1).

OPERATIONAL MODAL ANALYSIS

Cases exist where it is rather difficult to apply an artificial force and where one has to rely
upon available ambient excitation sources. In such cases, it is practically impossible to mea-
sure this ambient excitation, and consequently, the responses are the only signals that can be
measured. Traditionally, one assumes that the outputs are the results of a stochastic process
with white noise sources as inputs. The need to perform output-only modal analysis probably
emerged first in civil engineering, where it is very difficult and expensive to excite construc-
tions like bridges and buildings by an artificial excitation that exceeds the natural vibrations
due to traffic and wind. Also in mechanical engineering, operational modal analysis proved to
be useful: for instance to obtain modal parameters of a car during road testing or an airplane
in flight conditions. Often operational test conditions differ from laboratory test conditions,
because during the in-operation tests the real loading conditions on the structure are present
(suspension pre-strains of a car on the road, aero-elastic interactions during flight conditions,
...). For example, an airplane during flight conditions has a (totally) different dynamical be-
haviour than an airplane tested in laboratory conditions. Another benefit of output-only modal
analysis is the fact that a linear model of the system is obtained around the real working point
of operation.

Output-only data

Starting from the input/output relation

Y(ω) = H(ω)F(ω) (12)

and assuming the input forces to be a stationary stochastic process, the power spectral matrix
of the outputs, SY(ω) ∈ CNo×No , are given by

SY(ω) = H(ω)SF(ω)HH(ω) (13)
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with

H(ω) =
Nm∑

m=1

ΦmLT
m

iω − λm
+

Φ∗
mL∗Tm

iω − λ∗m
(14)

Under the assumption that the operational forces are white input noise sources (i.e., SF is a
constant frequency-independent matrix), SY(ω) can be modally decomposed as [13, 14]

SY(ω) =
Nm∑

m=1

ΦmKT
m

iω − λm
+

Φ∗
mK∗T

m

iω − λ∗m
+

KmΦT
m

−iω − λm
+

K∗
mΦ∗T

m

−iω − λ∗m
(15)

where Φm ∈ CNm is the mode shape vector of mode m, and Km the operational refer-
ence vector. This operational reference vector is a function of the modal parameters and the
(frequency-independent) power spectral matrix of the unknown random input forces. As the
input forces are unknown, it is impossible to recover the modal participation factors, Lm,
from Km. All other modal parameters are still identifyable.

One notice that the modal decomposition (15) contains both stable (λm) and unstable
poles (−λm). It is however possible to get rid of the unstable poles by considering the so-
called ‘half’ (or positive) power spectra, S+

Y(ω), which are obtained by Fourier transforming
the positive lags of the correlation functions.

S+
Y(ω) =

Nm∑

m=1

ΦmKT
m

iω − λm
+

Φ∗
mK∗T

m

iω − λ∗m
(16)

Consequently, all FRF-based estimators can be used to obtain the poles and mode shape vec-
tors by simply replacing the FRF measurements by the half power spectra.

Input/output data: The OMAX approach

OMAX stands for Operational Modal Analysis in presence of eXogenous inputs. In some
in-operational testing applications, exciters are used to inject more energy in the system. This
is for instance done during flight flutter tests, where artificial forces are applied on the wings
of the airplane using special equipment. In that case, input signals are available and it is
again possible to use classical EMA identification techniques to estimate the modal param-
eters from the input/output (or FRF) measurements. However, by doing so, the effect on the
natural forces will be treated as ambient ‘noise’. Traditional EMA techniques will remove this
‘noise’ by averaging the measurements. This is in contradiction with the output-only approach
where the modal parameters are estimated using response data due to the ambient excitation
only. Clearly, the ambient noise is not just ‘noise’ but it contains useful information about
the system. To make an optimal use of the operational data, both measured (artificial) and
unmeasured (natural) forces should be taken into account. By doing so, all the available in-
formation in the measured data can be optimally used. One can write that output o consists of
two contributions: a forced part due to the applied (and measured) forces Fi(ωk) and a second
unknown part due to the (unknown) ambient excitation Eo(ωk); a third term, To(Ωk)

A(Ωk) , models
all transients effects,

Yo(ωk) =
∑

i

Boi(Ωk)
A(Ωk)

Fi(ωk) +
Co(Ωk)
A(Ωk)

Eo(ωk) +
To(Ωk)
A(Ωk)

(17)
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This results in the following cost function [15]

` =
∑

o,k

|A(Ωk)Yo(ωk)−∑
i Boi(Ωk)Fi(ωk)− To(Ωk)|2
|Co(Ωk)|2 (18)

In [10] a combined deterministic-stochastic frequency domain subspace system identification
algorithm is proposed. This alternative ‘OMAX’ approach can also take both measured (ar-
tificial) and unmeasured (natural) forces into account. OMAX estimators are able to identify
modes that are weakly excited by the applied forces, Fi(ωk), as long as they are excited by
the natural forces.

CONCLUSIONS

In this contribution, a multivariable frequency-domain modal estimator, based on a common
denominator transfer function model, has been given. Next, a so-called ‘polyreference’ fre-
quency domain least squares estimator has been proposed, which — in general — yields very
clean stabilisation diagrams, easing dramatically the problem of selecting the structural sys-
tem modes. Finally, attention has been paid to operational modal analysis. During operational
tests unknown ambient (stochastic) excitations are present. To model systems in operational
conditions, stochastic (OMA) and combined deterministic-stochastic frequency domain esti-
mators (OMAX) were proposed.
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