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Abstract
In modern gas turbines operating with premixed combustion flames, the suppression of pres-
sure pulsations is an important task related to the quality of the combustion process and to
the structural integrity of engines. In this work, the use of Helmholtz resonators for damp-
ing thermoacoustic pulsations occurring in combustion systems is discussed. The dampers
are modeled according the harmonic oscillator model and a detailed analysis of the physical
mechanism responsible for sound attenuation is performed. The theory we present links the
suppression of acoustic pressure to damper number, geometry and bias flow. The theory is
validated by using impedance tube experiments and engine tests performed on an ALSTOM
GT11N2 heavy-duty gas turbine.

INTRODUCTION

In modern gas turbines operating with premixed combustion flames, pressure pulsations may
occur when the resonance frequencies of the system are excited by heat release fluctuations
produced by flow fluctuations independent of the acoustic field (combustion noise). Heat re-
lease fluctuations may be also generated by acoustic oscillations in the premixed stream. The
feedback mechanism inherent in such process may lead to combustion instabilities, the am-
plitude of pulsations being limited in this case by nonlinearities [1]. The suppression of these
thermoacoustic pulsations is an important task that may be addressed by means of passive
control methods like the use of Helmholtz resonators [2], [3], [4]. As shown in Fig. 1, a clas-
sical Helmholtz resonator consists of a volume with a neck through which the fluid inside the
resonator communicates with an external medium. When a Helmholtz resonator is applied to



ON THE DESIGN OF HELMHOLTZ RESONATORS, Bellucci et al., ICSV13, Vienna, Austria 2

Figure 1: Schematic of Helmholtz resonator.

an enclosure, in correspondence of the neck mouth a frequency dependent boundary is real-
ized. This boundary is acoustically described by the neck mouth impedance Z n, i.e. the ratio
in the frequency domain between acoustic pressure and acoustic velocity normal to the neck
mouth. An important characteristic of the resonator is its (circular) resonance frequency ω res,
i.e. the frequency that corresponds to Im(Zn) = 0. When a Helmholtz resonator with neck
mouth area An is applied to an enclosure, on the surface An the infinite impedance boundary
(corresponding to zero acoustic velocity) is replaced by the resonator mouth impedance Z n.
The effect of the damper on the j-resonance frequency ωj of the enclosure without resonator
has been studied by several authors [5], [6], [7]. Generally, at the frequency ωj amplitude
reduction may occur when ωres = ωj . However, the analysis also shows that if the excitation
is not confined to ωj , the application of resonators may generate new amplitude maxima at
frequencies close to ωj . The aim of this work is to investigate the effect of resonators applied
to an enclosure like a gas turbine combustion chamber, where combustion noise is responsible
for acoustic excitation within a large frequency range around ω j . Therefore, first the pressure
field in the enclosure is expressed by means of a series of acoustic modes. Then, the effect of
the resonator impedance on the single term of the modal expansion is analyzed and a theory is
derived to predict the sound suppression. Finally, the theory is validated using impedance tube
experiments and engine test performed on an ALSTOM GT11N2 heavy-duty gas turbine.

ACOUSTIC THEORY

In an uniform reacting low-Mach number mean flow, the superimposed acoustic field is de-
scribed by the non homogeneous Helmholtz equation and the linearized momentum equation
that read respectively as [8]

∇2 p̂+ k2
P p̂ = −i ω γ − 1

c2
Q̂ , û =

i

ω ρ
∇ p̂ (1)

where p̂(ω, x) and û(ω, x) are the frequency domain acoustic pressure and velocity respec-
tively (being x the space vector), kP is the complex wave number, ω = 2πf the circular
frequency with f frequency, ρ and c the mean flow density and speed of sound respectively,
γ the specific heat ratio and Q̂ the frequency domain volumetric heat release related to the
combustion process. In general, Q̂ is the sum of two contributions: the combustion noise
term independent from the acoustic field and the amplifier term that is a function of acoustic
pressure and/or acoustic velocity. The boundary conditions are expressed as p̂/ û · n = Z on
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∂V where Z(ω, x) is the acoustic impedance on the boundary ∂V and n the outward normal.
Using the Green functions, the pressure field in the volume V may be expressed as [8, p. 554]

p̂(x) =
∞∑

j=0

i ω ρψj(x)
V Λj(k2

j − k2
P )

[
γ − 1
ρ c2

∫
V
Q̂(x)ψj(x)dV −

∮
∂V

p̂(x)
Z(x)

ψj(x)d∂V
]

(2)

where ψj(x) are the eigenfunctions defined as the non trivial solutions of the problem

∇2ψj + k2
j ψj = 0 , ∇ψj · n = 0 on ∂V (3)

where both the eigenfrequencies ωj = kj c and eigenmodes ψj are real and frequency in-
dependent. Moreover, the eigenmodes are orthogonal, i.e.

∫
V ψjψmdV = V Λjδj,m with

Λj = 1/V
∫
V ψ

2
jdV . Usually, the term (k2

j − k2
P ) is expressed as (ω2

j + iξjωjω − ω2)/ c2,
being ξj the modal damping typically of order 0.01 [8].

In the following we consider an enclosure equipped with NR equal resonators that are
acoustically “compact”, i.e. both the mode values and the resonator impedance are constant
on the k-resonator mouth located at xk (low frequency hypothesis). Moreover, we concentrate
on the acoustic mode ψj with eigenfrequency ωj belonging to the low frequency range, where
the average separation between eigenfrequencies is much larger than the average modal band-
width. We start the analysis assuming heat release fluctuations independent from the acoustic
field (combustion noise). Thus, for frequencies close to ω j the modal coupling may be as-
sumed negligible and Eq. (2) is approximated by the relation

p̂(ω, x) ≈ i ω

ω2 − i ξj ωj ω − ω2
j

[
B(ω)

NR∑
k=1

ψj(xk) p̂(ω, xk)− C(ω)

]
ψj(x) (4)

B(ω) =
ρE c2E An

VE Λj Zn(ω)
, C(ω) =

γE − 1
VE Λj

∫
VE

Q̂(ω, x)ψj(x) dV

where the suffix E refers to enclosure conditions and VE is the volume of the enclosure. To
express the resonator impedance Zn, the harmonic oscillator model is used. It gives [5]

Zn = i
ρR c2R An

ω ω2
res VR

(
ω2 − i

ωres

qR
ω − ω2

res

)
(5)

where the suffix R refers to resonator conditions, VR is the resonator volume and qR the
resonator quality-factor defined as qR = ωres ρRL

′
n/Rn = ρR c

2
RAn/ωresVRRn with L′

n

effective length of the damper neck and Rn = Im(Zn) resonator resistance. In combustion
applications, a cooling flow must be maintained through the resonator in order to prevent
overheating. When the acoustic velocity in the damper neck is much smaller than the mean
flow velocity, the resonator resistance may be expressed as Rn = ζ ρR un where ζ is the
pressure loss coefficient in the neck and un the average mean flow velocity in the neck [2].
Next, we introduce the quality-factor of the enclosure without resonators q E = ωj/∆ωj ,
where ∆ωj is defined so that at ωj ± ∆ωj/2 the pressure amplitude is 1/

√
2 times the peak

amplitude at ωj . Hence, using Eq. (4) with Zn = ∞ and the assumption ξj � 1, one has
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qE = 1/ξj . Finally, by using Eqs. (4) and (5) with ρE c
2
E = γE pE ≈ ρR c

2
R = γR pR, one

has

p̂

p̂0
(ω) =

i/εqE

( ω̃res − i/εqR)−1 ωres/ωj − ( ω̃ − i/εqE)
(6)

where we have introduced

ω̃ =
ω2 − ω2

j

ω ωj ε
, ω̃res =

ω2 − ω2
res

ω ωres ε
, ε =

√
VR

∑NR
k=1 ψ

2
j (xk)

VE Λj
(7)

p̂0(x) = −C(ωj)ψj(x) =
ψj(x)

VEΛjξjωj
(γE − 1)

∫
VE

Q̂(ω, x)ψj(x) dV (8)

In the following we assume white noise, i.e. Q̂ is frequency independent. Then, p̂0 is the
pressure at ω = ωj in the enclosure without resonators. When 1/qR → 0 (slightly damped
resonator), the pressure reduction | p̂/ p̂0| at ω = ωj is maximized provided that ωres = ωj .
In this case Eq. (6) reads as [ p̂/ p̂0]ω=ωres=ωj = 1/(1 + ε2 qR qE), showing that when the
excitation is confined to ωj , the maximum pressure reduction is obtained by maximizing ε
and qR, i.e. by locating large volume lightly damped resonators close to mode antinodes.

When considering frequencies close to ωj , Eq. (6) reads as[
p̂

p̂0
(ω)

]
ωres=ωj

=
i/εqE

( ω̃ − i/εqR)−1 − ( ω̃ − i/εqE)
(9)

Eq. (9) indicates that the pressure reduction is a function of the three nondimensional numbers
ω̃, (ε qR) and (ε qE). Fig. 2 reports the H∞ norm of the pressure ratio [ p̂/ p̂0]ωres=ωj as a
function of 1/(εqR) and 1/(εqE) 1. Fig. 2 indicates that the pressure reduction is larger when
1/(εqE) is lower, that means the parameter ε should be always maximized. Furthermore, for a
given value of (εqE) the curve (εqR)∞ also reported in Fig. 2 provides the maximum pressure
reduction. The (εqR)∞ curve is well interpolated by the fit

(εqR)∞ =
1

1.2208 + 0.1271/(εqE)
(10)

The criterion (10) indicates that when maximizing the pressure reduction with white noise
excitation, besides ωj other frequencies may be excited [6], [7]. Fig. 3 illustrates typical fre-
quency responses for a fixed value of (εqE) when varying (εqR). Fig. 3 shows that when
(εqR) > (εqR)∞, the amplitude at ωj is minimized and two pulsation peaks appear at ω±.
On the contrary, when (εqR) < (εqR)∞ the pressure spectrum has a maximum at ω = ωj .
In both cases, peak amplitudes are lower than in the case without resonators. The maximum
pressure reduction is achieved with (εqR)∞.

In case of heat release fluctuations dependent on the acoustic field, a negative flame
damping may be introduced to account for the amplification behavior of the flame [4]. There-
fore, the global damping ξj is the sum of the flame damping and the internal positive damp-
ing representing the dissipative processes. When the total damping is negative, the mode

1|| p̂/ p̂0||∞ = max{|( p̂/ p̂0)|} for ω̃ ∈ [−∞,∞].
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Figure 2:H∞-norm of pressure ratio p̂/ p̂0 with ωres = ωj .

becomes unstable. The poles of the combustor equipped with dampers ω± + iν± are ob-
tained by setting to zero the denominator of Eq. (6). By assuming small damping, one has
ω± ≈ ωj(1± ε/2) [6]. The system growth rates ν± are then given by ν± ≈ ωj(ξj + 1/qR)/4
where the approximations ν± � ωj and ε � 1 have been used. Hence, when 1/qR is suffi-
ciently large, the application of the resonators may force the sign of the modal damping ξ j±
to be always positive, i.e. the system is unconditionally stable.

Figure 3: Pressure ratio for 1/(εqE) = 0.2. Effect of (εqR) variation.
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Figure 4: Pressure spectra of impedance tube with and without dampers. Neck velocity varia-
tion.

VALIDATION OF THE THEORY

The validation of the acoustic theory for damper design has been performed first using ex-
periments conducted in an atmospheric impedance tube. The test rig at ALSTOM technology
center in Baden, Switzerland, consists of a hollow steel tube where plane wave propaga-
tion occurs for frequencies below 620 Hz (cut-off frequency). Four loudspeakers emitting
pure toned frequency signals at various frequency intervals are used for the acoustic forcing.
Using the multi-microphone method, pressure spectra may be measured at different axial po-
sitions [9]. In the impedance tube, acoustic pulsations have been suppressed by means of a
resonator mounted on a flange located on one end of the rig. The resonator neck had a diameter
of 35mm and was 162mm long. The resonator volume was composed of a 150mm diame-
ter cylinder whose length was varied by means of a movable piston in order tune the resonator
resonance frequency to the frequency of the first axial mode of the impedance tube [10].
Furthermore, air was injected inside the resonator volume in order to tune the resonator re-
sistance. The quality factor of the enclosure was determined by using the impedance tube
spectrum measured without resonator. Fig. 4 reports pressure spectra measured without and
with resonator. In the latter case, the neck mean flow velocity un was varied from 0 m/s to
19 m/s. In particular, the velocity un = 13 m/s was found to give the maximum damp-
ing || p̂/ p̂0||∞ = 0.27. According to Eq. (10), the minimum achievable pressure ratio was
|| p̂/ p̂0||∞ = 0.24 in correspondence of a neck velocity un = 15 m/s. Pulsation amplitudes
computed with Eq. (6) for un = 15 m/s have been also reported in Fig. 4, showing good
agreement with experiments.

An additional validation has been performed by applying the theory to an ALSTOM
GT11N2 gas turbine combustor. In this engine, resonators applied to the top of the silo com-
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Figure 5: Pressure spectra of GT11N2 gas turbine with and without dampers.

bustor resulted in a very efficient measure to suppress thermoacoustic pulsations [2], [11].
Fig. 5 illustrates the spectra measured in the engine without and with 7 resonators designed to
address the baseload peak frequency. In Fig. 5 the spectrum with dampers has been also com-
puted using Eq. (6), with the combustor eigenmode calculated using Finite Element acous-
tics [11]. The predicted pressure ratio at ωj was | p̂/ p̂0| = 0.58, whereas the engine tests
showed a larger damping corresponding to a pressure reduction of 0.47. However, note that in
this case thermoacoustic simulations have demonstrated that the pulsation peak was generated
by combustion instability [11].

CONCLUSIONS

In this work, the acoustic damping effect of resonators applied to enclosures has been ana-
lyzed. The theory we have derived is suitable for gas turbine combustion chambers, where
the temperature inside the damper (related to the cooling flow purging the resonator) differs
from the combustion chamber temperature. The sound excitation has been assumed indepen-
dent from the acoustic field (combustion noise). In agreement with the classical resonator
design rules, we have found that the maximum pressure reduction is obtained by tuning the
resonator resonance frequency to the pulsation peak frequency and by locating large volume
lightly damped resonators close to mode antinodes. When the excitation is not confined to ω j ,
the application of resonators may lead to the excitation of additional pulsation peaks. In the
present work, we have obtained a theoretical expression providing the maximum suppression
of acoustic amplitude for all the possible pulsation peaks occurring around ω j , this condi-
tion being achieved when a specific value is assigned to the damper resistance. The theory
has been validated by means of experiments performed in an impedance tube, where the res-
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onator resistance was controlled by varying the mean flow throughout the damper neck. The
experiments have confirmed the accuracy of the theory, with a 11% error on the maximum
achievable damping. Finally, the theory has been also applied to tests performed on an AL-
STOM GT11N2 heavy-duty gas turbine, where pressure spectra have been measured with and
without resonators designed to address a specific pulsation frequency. Note that in this case
the theory (developed for combustion noise) has been applied to a combustion instability pul-
sation peak, the computed pressure reduction showing an error of 23% with respect to engine
tests.
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