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Abstract 
In machine installations vibratory power is being transmitted as structureborne sound via the 
machine’s feet and into its supporting structure. The paper examines this injection of power 
from sets of point forces that act on a periodic-type support structure, as is found in ship and 
aircraft foundations. A developed analytical model [1] of a finite periodic structure formed by 
beam-type elements is used for determining the injected power. The model is also used for 
examining what effect that spatial cross-coupling between excitation points has on the power 
injection, which often occurs in several transmission coordinates. The comb-type foundation 
being considered herein comprises of a waveguide with structural supports (side-branches) 
attached asymmetrically at regular intervals. By allowing for three motion-coordinates, this 
tri-coupled periodic structure experiences flexural-longitudinal wave coupling phenomena. 
This is taken into account when determining all the mobilities at driving force locations that 
govern the power injection into the periodic assembly. These results are used for examining 
the effect of spatial cross-coupling on the power injection for cases of ‘distributed’ excitation 
by sets of point forces with variable phases.  

INTRODUCTION 

Interior noise in transportation vehicles is often caused by audio-frequency vibration 
from installed machines. These vibrations are transmitted as structureborne sound via 
the mounts and into the foundation structure. Aircraft, ships, and offshore structures 
are often modularly built-up structures, which form so-called spatially periodic 
systems. Prediction of the vibratory power transfer from a machine and into this type 
of foundation and adjacent environments is important for interior noise predictions. 
Studies of multi-point mounted machine sources on non-periodic foundations have 
shown that the transfer of power can be predicted with an acceptable accuracy by a 
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summation of uncorrelated local power contributions in all translational transmission 
terminals [2,3]. This prediction assumes that transmission in rotational coordinates 
can be ignored and that spatial cross-coupling between mounting points can be 
neglected; this last assumption generally holds, provided that the distance between 
mounting points exceeds one-half wavelength of flexural motion in both source and 
receiver, or for frequencies that exceed the fundamental anti-resonance (node) 
frequency of both source and receiver. Results from a recent Round Robin Test [4] 
clearly support these assumptions.  

The purpose of this paper is to examine whether this also applies for line-type 
supporting structures in which forced responses in neighbouring mounting points 
more easily ‘communicate’ with one another, and hence influence the totally injected 
power. Examined herein is this injection of vibratory power from sets of point forces 
that act on a periodic-type support structure. These contact forces simulate the action 
on the foundation from a resiliently mounted machine source. Herein, we consider a 
simplified comb-like supporting structure in the form of a foundation beam supported 
asymmetrically at regular intervals by vertical beams (side-branches). The dynamics 
of this structure is based on an analytical model of a finite periodic structure 
developed in ref. [1]. Allowing for three motion-coordinates, this tri-coupled periodic 
structure experiences flexural-longitudinal wave coupling, and this phenomenon is 
taken into account when determining all mobilities at driving force locations that 
govern the power injection into the periodic foundation. These results are used for 
examining the effect of spatial cross-coupling on the power injection for cases of 
‘distributed’ excitation by sets of point forces with variable phases. 

OUTLINE OF THEORETICAL MODEL 

Consider a two-dimensional source/isolator/receiver arrangement (Figure1) and the 
resulting action of contact forces on the foundation, causing velocities vi(t) in the 
motion coordinates u, w, φ. For harmonic vibration at frequency f, the column vector 
{v} of these complex velocities is by definition related to the vector of contact forces 
{F} via the receiver mobility matrix [Y] as {v}= [Y]{F}. With forces acting simulta- 
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Figure 1 – Machine mounted on periodic foundation and corresponding force excitations. 
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neously in n coordinates, the time-averaged power Pi injected in the i’th coordinate is 
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where * means the complex conjugate quantity. This shows that the i’th velocity 
results from the entire set of forces. Thus, the total injected power P = ∑ Pi  is  
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where superscript T means a transposed vector. 

System Mobilities 

The mobilities appearing in eq. (2) are complicated functions of frequency, and point 
excitation in any single direction results in responses in all three motion coordinates, 
because of flexural-longitudinal wave coupling in the structure. Based on wave 
propagation characteristics of an infinite periodic structure, a transfer mobility was 
derived for a finite system [1] for the case of force or moment excitation applied at a 
beam intersection (junction). In the present investigation this mobility is generalized 
to include “in-bay” point excitation by using reciprocity as is outlined below.  
 Let an arbitrary position for point forcing on the foundation be denoted by p and 
the position of responses be denoted by q. And let the left-most junction position of 
the periodic structure be denoted by 0. The transfer mobility matrix [Yp0], which 
relates velocities at p to forces at 0 is already available [1]. The mobility matrix [Y0p] 
relating the vector of velocity responses {v0} at 0 to the vector of forces {Fp} at p 
follows from reciprocity [5] as [Y0p] = [Yp0]T. The velocity vector can thus be written  
 

    {v0}= [Y0p] {Fp} =  [Yp0]T{Fp}.        (3) 
  

The very same response vector {v0} could be generated by an equivalent force vector 
{F0,eq} applied at position 0, giving {v0}= [Y00]{F0,eq}, where [Y00] is the direct 
mobility matrix at junction 0. In a rearranged form this yields 
 

{F0,eq} =  [Y00]−1{v0},      (4) 
 
where the superscript −1 means matrix inversion. Substituting eq. (3) into (4) gives an 
expression for the equivalent force vector in terms of known quantities, and this can 
also be used for obtaining the velocity vector {vq} at the desired position q : 
 

{F0,eq}= [Y00]−1  [Yp0]T{Fp}   and    {vq}= [Yq0]{F0,eq}     (5, 6) 
 
Eliminating {F0,eq} from these finally gives the general transfer mobility matrix [Yqp], 
relating the vector of velocities at position q to the in-bay excitation force vector at p 
  

{vq} =  [Yq0] [Y00]−1[Yp0]T{Fp} =  [Yqp] {Fp}.      (7)  
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On Wave Propagation in Periodic Structures 

Free harmonic waves in a tri-coupled, infinite periodic structure is governed by three 
independent wave types, each of which is characterized by a pair of “propagation 
constants” µ = ±(µR + iµI), where the negative value corresponds to a positive-going 
wave and visa versa. Usually, µR is called the attenuation constant and µI the phase 
constant. So, if a single positive-going characteristic harmonic wave with propagation 
constant µ = –(µR + iµI) and frequency f travels through the system, then the complex 
velocities v(ξ) and v(ξ+l) at identical positions ξ in adjacent periodic elements of 
length l are related by v(ξ+l)ei2πft = eµ v(ξ)ei2πft . This shows that free wave motion is 
possible only in frequency bands where µ is purely imaginary. These bands are 
known as “propagation zones” or “pass bands”. For negligible structural damping, the 
wave thus propagates throughout the system without a change in amplitude. The 
frequency bands in which µ is real are called “attenuation zones” or “stop bands”, 
since no transport of vibrational energy is possible and the wave amplitude is 
attenuated (reduced) from element to element. Solutions for these propagation 
constants µi of an infinite periodic structure are the crucial (and controlling) functions 
for determining propagation properties and the dynamics of finite periodic structures 
[1].  

NUMERICAL INVESTIGATION OF CROSS-COUPLING 

The periodic foundation structures examined in the numerical simulations are similar 
to that in Figure 1b with five bays. The width of all beam components is 40 mm, and 
the six vertical support beams are of 180 mm length and 3 mm thickness, whereas the 
foundation beam thickness h is varied as 3 mm, 6 mm and 9 mm. The span length is 
160 mm. The material is steel with Young’s modulus of 200·109 N/m2 and density of 
7840 kg/m3. Structural damping is modelled by a complex Young’s modulus with a 
damping loss factor of 0.001 for the foundation beam and 0.003 for the vertical 
support beams. The termination mobility of the support beams is varied, from a pair 
of vertical and horizontal blocked springs of complex stiffness s = 12.5·106(1+i0.3), 
to a similar pair of blocked springs of s = 4.0·105(1+i0.3), each in parallel with a 
viscous damper of damping constant r = 890 kg/s, which is identical to the equivalent 
input properties of a 3 mm infinite plate of steel. This latter termination mobility is 
chosen to simulate the expected energy absorption from the remaining structural 
environment not specifically modelled, e.g., a complicated double-bottom of a ship.    

Different types of forcing configurations are examined comprising a set of 
transverse (vertical) forces applied at in-bay positions, and a similarly applied set of 
longitudinal (axial) forces. Excitations at junctions are examined for a set of 
transverse forces and for a set of moment excitations. Each forcing set is composed of 
three harmonic point forces (or moments) of complex amplitude |Fm|exp[i(2πft – φm)], 
m=1,2,3, with |Fm|=1.41 N (or |Mm|= 70.7·10−3 Nm). The mutual phase relation φm 
between forces takes values of {φ1, φ2, φ3}={0, π/2, π}; {0, π, 2π}; and {0, 2π, 4π}. 
Neighbouring forces are thus in quadrature, in anti-phase, and in phase, respectively.  
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Results 

Figure 2 shows frequency variations of the propagation constants for two of the wave 
types that are present in a tri-coupled periodic structure, having a thin foundation 
beam of h=3 mm; not shown is the third wave type, which is a flexural near-field. 
Wave propagation zones, for which µ is almost purely imaginary, µ ≈ ± iµI, are 
clearly seen at lower frequencies where wave type A is predominantly flexural, for 
example, in the bands from 230 to 295 Hz and from 420 to 590 Hz. 
 Figure 3 shows the examined structures and two types of applied forcing, i.e., 
junction and in-bay excitations, and the two types of terminals for the support beams. 
Figure 4 shows an example of a direct mobility and transfer mobilities at in-bay 
positions 2 and 3, computed with all three propagation constants as integral parts. 
This clearly shows periodic structure behaviour with the natural frequencies occurring 
in groups of N=five in the propagation zones, where N is the number of periodic 
elements [6]. The transfer mobilities also reveal low wave transmission and hence 
low vibration in some distinct attenuation zones, for example below 220 Hz and in 
bands from 295 to 420 Hz and 590 to 900 Hz; one therefore expect little effect of 
cross-coupling in the total power injected by the three transverse forces applied at in-
bay positions as illustrated in Figure 3. Results in Figure 5 also confirm this.  

Figure 5 shows comparisons of ‘exact’ calculations of the totally injected power 
for the three cases of phase relations between the forces, and the corresponding but  

 
Figure 2 – Real and imaginary parts of propagation constants µ = (µR + iµI) for two wave 

types:–––, flexural-longitudinal wave A; ----, flexural-longitudinal wave B. 
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Figure 3 – Five-bay periodic foundation structures with a set of transverse forces applied at: 
(a) junctions in spring terminated system and, (b) in-bay in spring-damper terminated system.  
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Figure 4 – Modulus of direct and transfer mobilities for transverse force excitation of five-
bay periodic foundation structures of h=3mm; –––,Y11 ;------, Y21= v2/ F1 ;········, Y31= v3/ F1 . 
 
simplified estimations of injected power determined as sums of the individual and 
uncorrelated contributions, that is, with cross-coupling being neglected. This means 
that only the diagonal terms of the foundation mobility matrix in eq. (2) are used. In 
the h=3mm-case the cross-coupling has relatively little effect overall, apart from the 
bands of mode-groups where the simple calculation over-predicts the injected power. 
 In the case of a thick foundation beam of 9mm the effect of cross-coupling is 
relatively small, and for 1/3-octave band-averaged values, say, the influence is less 
than ±3 dB. Moreover, because of the increased bending stiffness of the foundation  

 

 
Figure 5 – Transmitted power from three in-bay transverse forces with phase relations {φ1, 
φ2, φ3}={0, π/2, π}i; {0, π, 2π}ii; and {0, 2π, 4π}iii; –––, exact calculation; ----, 
estimate neglecting cross-coupling. Results at left for: h=3mm; at right for: h=9mm. 
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Figure 6 – Transmitted power from three forces acting: (a) at junctions of 3mm foundation 
beam; and (b) at in-bay positions of 9mm foundation beam. –––, exact calculation; ----, 
estimate neglecting cross-coupling.  Phase relations {φ1, φ2, φ3}iii = {0, 2π, 4π}.  
 
beam, the spectral pattern is changed and the mode groups are ‘pressed’ towards 
much higher frequencies (beginning with 795 Hz): the injected power is seen to be 
much reduced in the mid-frequency range, especially in the previously mentioned two 
lowest mode groups where the power now is reduced by up to 35 dB, and on average 
by about 5 dB for frequencies exceeding approx. 900 Hz. 
 Designing the mounting of a machine so that its contact points are aligned with 
the supporting beams of the foundation as in Figure 3a is very important. This is 
illustrated for a thin foundation beam of 3mm in Figure 6a, which shows that the 
injected power becomes very small, and it is even less than that of a smooth broad 
envelope of the lowest values in Figure 5a at all frequencies. Or for that sake, mostly 
lower than the power injected by in-bay forces into a thick 9 mm foundation beam, 
see Figure 6b, which is taken from Figure 5b (iii). Results in Figure 6a also reveal 
that the exact calculation and the simplified estimate of total power are almost 
identical for {0, 2π, 4π}; this also applies for the other phase relations. 
 For the foundation with strongly absorbing terminations of springs and viscous 
dampers in parallel (Figure 3b), the overall trends in total power injection are found 
to be the same at high frequencies, albeit with much lower and smoothened peaks. At 
low and mid-frequencies, however, the injected power is much increased by up to 17 
dB. This is seen from the results in Figure 7, which correspond to those in Figure 6. 
Results for a set of longitudinal forces applied at in-bay positions of a foundation 
beam of 3mm are shown in Figure 8a. Here, deviations of about ±5 dB are noted 
between exact and simple estimates of power, which is controlled by distinct peaks; 
the strong peaks at 320 and 930 Hz also appear in some of the previous figures, where 
they result from flexural-longitudinal wave coupling. The component at 3000 Hz 
corresponds to the fundamental free-free mode of the foundation beam. Figure 8b 
shows results for a set of moments applied at junctions of a 9 mm foundation beam.  
 

Figure 7 – As in Figure 6, but for high absorbing terminations;{φ1, φ2, φ3}ii = {0, π, 2π}.  
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Figure 8 – As in Figure 7, but for: (a) longitudinal force excitation at in-bay positions and 
for h=3mm; and (b) moment excitation at junctions and for h=9 mm. 

CONCLUSIONS 

Exact formulations [1] are used for calculating the power being injected into a beam-
type periodic foundation structure from sets of excitation point forces with variable 
phases. From these results and from comparisons with a simplified prediction, which 
neglects spatial cross-coupling between the excitation points, it is concluded that: 
-  Structural design can minimize power transfer considerably by aligning machine    

mounting points with the supporting beams of the foundation. 
-  Flexural cross-coupling can be neglected for the examined terminations since its    

effect is relatively small, with band-averaged deviations of less than ±3 dB for   
excitation at junctions, and likewise for in-bay excitation of a thick foundation.   

-  With deviations of about ±5 dB for longitudinal excitations the effect of cross-    
coupling has to be considered if such long wavelength excitation is significant. 
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