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Abstract 
Free vibrations of simply supported multiphase magneto-electro-elastic plates have 
been studied by semi-analytical finite element method. Assumed shape functions are 
used in the plane of plate and one dimensional finite elements are used across the 
thickness of the plate. BaTiO3-CoFe2O4 composite is used as magneto-electro-elastic 
material.  
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1. INTRODUCTION 
 Recently the research on magneto-electro-elastic composite as smart materials 

has gained more importance. These materials have the capacity to convert one form 
of energy, viz., magnetic, electric and mechanical energy to another form of energy. 
They exhibit desirable coupling effect between electric and magnetic fields, which are 
useful in smart or intelligent structure applications and find applications in magnetic 
field probes, electric packaging, acoustic, hydrophones, medical ultrasonic imaging, 
etc. These smart materials seem to provide unique capabilities of sensing and reacting 
to external disturbances, thus helping to design based on performance, reliability and 
light weight requirements imposed in any modern structural applications.  
Studies on static and dynamic behavior of these materials in the form of plates and 
shells have been carried out in literature. Pan[1] has derived exact solutions for three 
dimensional, anisotropic, linearly magneto-electro-elastic, simply supported and 
multilayered rectangular plates under static loadings. Pan and Heyliger [2] have 
studied the free vibration behaviour of magneto-electro-elastic plate. Sunar et al. [3] 
have studied the finite element modeling of thermopiezomagnetic medium. 
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Buchanan[4] has studied the behaviour of infinitely long magneto-electro-elastic 
cylindrical shell using semi analytical finite element method. Buchanan[5] has 
studied the vibration behaviour of an infinite plate consisting of layered versus 
multiphase magneto-electro-elastic composites. Bhangale and Ganesan[6] have 
studied the free vibration behaviour of simply supported functionally graded and 
layered magneto-electro-elastic plates by finite element method. Chen et al. [7] 
carried out free vibration analysis of non-homogeneous transversely isotropic 
magneto-electro-elastic plates. A free vibration study of clamped–clamped magneto-
electro-elastic cylindrical shell was carried out by Annigeri et al. [8], also the 
authors[9] have studied the Free Vibrations of simply supported layered and 
multiphase Magneto-Electro-Elastic Cylindrical Shells. Aboudi[10] has carried out 
micromechanical analysis of fully coupled electro-magneto-thermo-elastic 
composites. In his study, a homogenization micromechanical method is employed for 
the prediction of the effective moduli of magneto-electro-elastic composites. His 
study includes determination of effective elastic, piezoelectric, piezomagnetic, 
dielectric, magnetic permeability and electromagnetic coupling moduli, as well as 
effective thermal expansion coefficients and the associated pyroelectric and 
pyromagnetic constants for magneto-electro-elastic composite.  
From the literature survey it is found that there is no finite element formulation 
available for vibration studies on multiphase finite magneto-electro-elastic plate. 
Hence in present study, free vibration analysis of multiphase magneto-electro-elastic 
plates has been carried out by using series solution in conjunction with finite element 
approach as developed by Rajesh and Ganesan[6] for functionally graded magnet-
electro-elastic plates, however in this paper it is extended for multiphase magneto-
electro-elastic plates. The main aim of the study is to bring out the effect of 
piezoelectric, piezomagnetic and coupling terms on frequency behaviour through 
proposed five cases of free vibrations for BaTiO3-CoFe2O4 composite plate.   

 

2. BASIC EQUATIONS 

The equilibrium equations for the magneto-electro-elastic solids for balance of body 
force, electric charge and electric current can be written as shown below. Pan [1] 

, 0ij j bfσ + = , , 0ij j eD f− = , , 0ij j mB f− =        (1) 
where fb,  fe and fm are the body force, electric charge density and electric current 
density respectively. The coupled constitutive equations for anisotropic and linearly 
MEE solids can be written as Buchanan [5].   
   

j jk k kj k kj kc S e E q Hσ = − − , j jk k jk k jk kD e S E m Hε= + + j jk k jk k jk kB q S m E Hµ= + +  (2) 
  
where σj, Dj and Bj indicate the  stress, electric displacement and magnetic induction. 
Sk, Ek and Hk represent strain, electric field and magnetic field.   
Cjk, εjk and µjk are the elastic, dielectric and magnetic permeability coefficients. 
 ekj , qkj, and mjk  are the piezo-electric, piezo-magnetic and magneto-electric material 

coefficients respectively.  
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The strain displacement relations are 
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where u, v and w are mechanical displacements in co-ordinate directions x, y and z. 
The electric field vector Ei is related to the electric potential φ as shown below. 
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The magnetic field Hi is related to magnetic potential  ψ as shown below. 
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3.0 FINITE ELEMENT FORMULATION 
The finite series solution has been assumed to satisfy the simply supported boundary 
conditions for plates. The finite element method is adopted in thickness direction of 
the plate. The nodal variables are u, v, w, φ and ψ. The shape functions are as follows; 
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where n and m being two positive integers and N and M are the number of terms in 
the series to be accounted for the general loading. The present study has been carried 
out similar to the reported by Pan and Heyliger [2] for m=n=1. In the end the analysis 
has been reduced for finite element in thickness direction with three-dimensional 
dependence, the solution based on the choice of n and m. The two noded finite 
element and the assumed shape functions are 
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For a coupled problem the finite element equations are as follows  
 
[ ] [ ] { } { } { }2 0uu u uK M U K Kφ ψω φ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + + =⎣ ⎦ ⎣ ⎦⎣ ⎦                

{ } { } { } 0
T

uK U K Kφ φφ φψφ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (8) 

{ } { } { } 0
T T

uK U K Kψ φψ ψψφ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦   
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 Various stiffness matrices are defined as shown below. 
 

[ ] [ ] [ ][ ]
T

uu u uK c B C B dz= ∫ ,  [ ] [ ]
T

u uK c B e B dzφ φ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫ ; 

[ ] [ ]
T
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where 0.25 x yc L L=  

[ ]uB , Bφ⎡ ⎤⎣ ⎦ , Bψ⎡ ⎤⎣ ⎦  represents  the strain-displacement, electric field-electric potential 
and magnetic field- magnetic potential relations respectively.  
The FE formulation is similar to Rajesh and Ganesan[6] hence it is given briefly here. 
In equation (8), eliminating electric and magnetic potential terms by condensation 
techniques to get Keq. The equation of motion for the system can be written as 
 
[ ]{ } { } 0eqM U K U⎡ ⎤+ =⎣ ⎦                     (10) 

Where [ ] [ ] [ ] [ ] [ ]1 1
eq uu u II I u IV IIIK K K K K K K Kφ ψ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦⎣ ⎦               (11) 
The component matrices for equation (11) are shown below. 
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The distribution of { }  φ and { }ψ can be as shown below. 

[ ] [ ]{ }1
II IK K Uφ −=  ,  [ ] [ ]{ }1

IV IIIK K Uψ −=                   (13) 
To study the effect of magnetoelectric constant (m) on the system frequencies, 
equivalent stiffness matrix [Keq_reduced] is derived by neglecting the coupling between 
piezoelectric BaTiO3 and piezomagnetic CoFe2O4 materials. The magnetoelectric 
material coefficient (m) is zero for single phase BaTiO3 and CoFe2O4[10]. 

[ ] 1 1

eq_reduced

T T

uu u u u uK K K K K K K Kφ φφ φ ψ ψψ ψ

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦             (14) 
To study the piezoelectric effect on frequency due to BaTiO3 material, the stiffness 
matrix eq_K φφ⎡ ⎤⎣ ⎦  is derived and is given by 

[ ] 1

eq_

T

uu u uK K K K Kφφ φ φφ φ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                  (15) 
To study the magnetic effect on frequency due to magnetic CoFe2O4 material 

eq_K ψψ⎡ ⎤⎣ ⎦  is used as stiffness matrix and is shown below. 
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[ ] 1

eq_

T

uu u uK K K K Kψψ ψ ψψ ψ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                             (16) 
Material properties of BaTiO3 and CoFe2O4 are given in Appendix. The Gaussian 
integration scheme is implemented to evaluate integrals of stiffness matrices. For the 
study, 150 two noded linear elements across the thickness direction are used with 
good convergence in results.  

 
5.0 RESULT AND DISCUSSION 

Densities of both materials are assumed to be same.  Five different cases of vibration 
are discussed and corresponding terminology is shown in Table-1.  
 

Table 1 Cases of free vibrations in magneto-electro-elastic plate  

Case  Stiffness 
matrix used  Frequency 

I [ ]uuK  Structural frequency with elastic property only  

II eqK⎡ ⎤⎣ ⎦  System frequency magneto-electro-elastic coupling 

III _eq reducedK⎡ ⎤⎣ ⎦  System frequency by neglecting magneto-electric 
coupling 

IV _eqK ψψ⎡ ⎤⎣ ⎦  System frequency with piezomagnetic phase  

V _eqK φφ⎡ ⎤⎣ ⎦  System frequency with piezoelectric phase  

  
5.1 Validation 
A square plate of (h/Lx) = (h/Ly)=1 studied by Pan and Heyliger [2] is considered here 
for comparison of results. Table 2 shows the frequency parameter 

max max* xL Cω ω ρ=  for the first case and second case of free vibration. An excellent 
correlation has been observed for mode 1. It is seen that present finite element gives 
an excellent correlation with analytical results given in Ref. [2] for the plate made of 
either fully piezoelectric BaTiO3 and or piezomagnetic CoFe2O4 material.  
 

 
Table 2: Validation for the frequency studies 

 
 BaTiO3 (B) CoFe2O4 (F) 

Mode Ref [2] present Ref [2] present 
1 2.1091 2.1091 1.5403 1.5403 
2 2.8153 2.8153 2.3373 2.3372 
3 3.9614 3.9614 3.1866 3.1866 
4 4.3888 4.3888 3.7914 3.7913 
5 5.5071 5.5071 4.5343 4.5342 

 
The material properties for vf=0% , 60% and 100% of BaTiO3 in BaTiO3-CoFe2O4 
composite are referred from for Aboudi[10].   
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The frequency is given in Hz for first ten modes. The following notations are used in 
Table 3, 4 and 5 in subsequent discussion. 
 
fuu = Structural frequency in Hz by using [Kuu] as stiffness matrix.  (Case- I) 
 
feq = System frequency in Hz by using [Keq] as stiffness matrix.      (Case-II) 
 
feq_reduced = Frequency in Hz by using [Keq_reduced] as stiffness matrix.  (Case-III) 
 
fψψ = Structural frequency in Hz by using [Kψψ] as stiffness matrix.  (Case-IV) 
 
fφφ= Structural frequency in Hz by using [Kφφ] as stiffness matrix.  (Case-V) 
 
Table-3 gives the frequencies for MEE plate for vf =0% of BaTiO3 in BaTiO3-
CoFe2O4 composite. It can be observed that frequencies show increasing trend as the 
mode number increase. The frequency due to [Keq] is marginally higher than the 
conventional structural frequency fuu, no difference between columns fkeq and 
fkeq_reduced is noticed as magnetoelectric coupling is absent in pure piezomagnetic 
CoFe2O4.  The fφφ values coincide with the structural frequency, since piezoelectric 
phase is absent for vf=0%.  

 
Table 3: Frequencies for MEE plate for vf =0% of BaTiO3 

 Case of free vibration 
Mode I II III IV V 

1 5794.97 5767.19 5767.19 5767.19 5794.97 
2 7394.62 7394.62 7394.62 7394.62 7394.62 
3 8467.34 8462.41 8462.41 8462.41 8467.34 
4 8753.51 8753.51 8753.51 8753.51 8753.51 
5 11935.84 11935.84 11935.84 11935.84 11935.84 
6 12060.38 12057.28 12057.28 12057.28 12060.38 
7 14180.66 14198.29 14198.29 14198.29 14180.66 
8 15881.76 15881.76 15881.76 15881.76 15881.76 
9 16985.25 16980.49 16980.49 16980.49 16985.25 

10 18938.49 18954.33 18954.33 18954.33 18938.49 
 
Table-4 gives the frequencies for MEE plate for vf =100% of BaTiO3 in BaTiO3-
CoFe2O4 composite. This corresponds to the plate made of pure piezo-magnetic 
CoFe2O4 material. Here also the frequencies show increasing trend as the mode 
number increase. The system frequency due to [Keq] is higher than the conventional 
structural frequency fuu, no difference between columns fkeq and fkeq_reduced is noticed 
as magnetoelectric (m) constant is absent in pure piezoelectric BaTiO3 . The fφφ values 
coincide with the system frequency, since piezoelectric phase is absent for vf=100%. 
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Table 4: Frequencies for MEE plate for vf =100% of BaTiO3 
 Case of free vibration 

Mode I II III IV V 
1 5471.12 6016.26 6016.26 5471.12 6016.26 
2 6562.53 6562.53 6562.53 6562.53 6562.53 
3 7562.51 7993.51 7993.51 7562.51 7993.51 
4 7993.51 8033.24 8033.24 7993.51 8033.24 
5 10777.69 11242.50 11242.50 10777.69 11242.50 
6 11242.50 11303.24 11303.24 11242.50 11303.24 
7 12167.15 12521.33 12521.33 12167.15 12521.33 
8 15185.08 15185.08 15185.08 15185.08 15185.08 
9 15228.08 15713.64 15713.64 15228.08 15713.64 

10 15347.17 15849.18 15849.18 15347.17 15849.18 
 
Table-5 gives the frequencies for MEE plate for vf =60% of BaTiO3 in BaTiO3-
CoFe2O4 composite. This corresponds to the MEE composite plate made of 40% 
piezo-magnetic CoFe2O4 material and 60% of BaTiO3. Apart from the increasing 
trend in frequencies the effect of magnetoelectric constant can be observed. The 
system frequency due to [Keq] is higher than the conventional structural frequency fuu, 
as some no difference in frequencies is observed between columns fkeq and fkeq_reduced 
is noticed. The fφφ values are more than system frequency and fψψ shows lower values 
than fkeq. 
 

Table 5: Frequencies for MEE plate for vf =60% of BaTiO3 
 Case of free vibration 

Mode I II III IV V 
1 5624.92 5659.42 5674.55 5640.67 5662.54 
2 6599.30 6599.30 6599.30 6599.30 6599.30 
3 7545.08 7995.95 8026.56 7541.95 8029.41 
4 8083.87 8083.87 8083.87 8083.87 8083.87 
5 10781.54 10804.46 11434.74 10780.52 11434.74 
6 11434.74 11434.74 11475.54 11434.74 11456.16 
7 12629.08 13118.98 13100.61 12629.60 13098.50 
8 15485.23 15485.23 15485.23 15485.23 15485.23 
9 15634.03 16164.85 16152.75 15631.85 16155.21 

10 16454.16 16643.84 16641.92 16434.34 16663.73 
 

 
CONCLUSIONS 

In this article, finite element procedure is adopted for the vibration of three-
dimensional, anisotropic, simply supported magneto-electro-elastic plate. A series 
solution is assumed in the plane of the plate and finite element procedure is adopted 
across the thickness direction. The model is derived based on constitutive equation of 
magneto-electro-elastic material. Coupling between elasticity, electric and magnetic 
effects are included in the analysis. The effect of piezoelectric and piezomagnetic 
phases on frequency is computed. The magnetoelectric effect on system frequency is 
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absent in pure BaTiO3 or CoFe2O4 plates. The piezoelectric phase increases the 
frequency where as piezomagnetic phase decreases the system frequency. 
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