ACTIVE DAMPING OF A QUADRATIC PLATE FOR A
NON-COLLOCATED DISTURBANCE

Martin Kozek!, Franz Hoftberger, and Markus Gusenbatder

Hnstitute for Mechanics and Mechatronics, Vienna Univgrsf Technology
Karlsplatz 13/202, A-1040 Vienna, Austria
2PROFACTOR Produktionsforschungs GmbH
Im Stadtgut A2, A-4407 Steyr, Austria
kozek@impa.tuwien.ac.&-mail address of lead author)

Abstract

In this work the active damping of a quadratic plate using pigzo patch actuators is de-
scribed. A numerical evaluation of an optimality criterifam placement of sensors and actu-
ators defines the location for the piezo patches. A stateespantroller in combination with
an observer and an alternative 2nd-order controller wittelecation feedback are designed
to add additional damping to the existing modes. Specifanttin was paid to suppress spill-
over (amplification of modes due to neglected dynamics) adinelquency response mode was
added to account for the effect of higher-order modes. Withdctuators in optimal positions
only a small band of maximal two eigenmodes could be effijedamped. Nevertheless, a
mode at 167Hz showed an attenuation of over 17dB. Additipnalblems were posed by a
bifurcation of the modal behaviour and the relation betwglate and sensor thickness.

INTRODUCTION

Active structural damping of spatial structures is an intgirfield of mechatronics, since the
application of an embedded control system with low-costpoments can be much easier and
less costly than a different design with higher structumhplexity or expensive materials.
The corresponding control theory is highly evolved and mdgeexcellent text books in this
field have been publishedl [5.111]12].

In practical applications, however, some of the conditimmshese methods may not be
fulfilled, and itis of interest for the user, what problemisamand what results can be achieved
with alternate methods. In this paper the active damping qiadratic plate is the subject,
and the non-collocated disturbance poses one of the mabegons. Due to this fact, only
a small bandwidth can be attenuated with a minimal set obcated sensor/actuator pairs.
Additional problems are posed by the symmetric eigenmodélésecquadratic plate, and the
relatively high stiffness of collocated actuators and esemsompared to the sheet metal. In
spite of these problems a controller consisting of two pelrkdops and acceleration feedback
could achieve a strong damping of the dominant eigenmode.
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The remainder of this paper is structured as follows: Fifs, system is described
and a mathematical model for controller and observer desigfesigned. Special care is
taken to incorporate Frequency Response Modes into thelraodeto guarantee optimal
Sensor/actuator placement. Simulation results and erpetal findings show that a simple
state space approach is not satisfactory in this case, talt ¢ontrol loops are superior. A
short summary with some proposals for improvements coesltige work.

SYSTEM AND MODEL

Quadratic Plate

The vertical elastic deflectiom(¢) of a quadratic elastic plate with lengthand thickness
is given by the partial differential equation
Otw O* M,  0?M,
h—5 + DV* t) = ——2= = 1
wherep is the density of the material, ard,,, and M, constitute the external moments per
length applied by actuators! [6,]10].

Eigenmodes of the Quadratic Plate

In figl the first 3 eigenmodes of the quadratic plate are tieghidhe maximum deflection is
normalized to 1. The associated eigenfrequencies are 2@@Hhe first mode and 74.1Hz
for both second and third mode (symmetric modes). In the chaejuadratic plate diagonal

Eigenmode 1 Eigenmode 2

Eigenmode 3

Figure 1: Eigenmodes 1 to 3 of the Quadratic Plate

node lines exist while for the rectangular plate only edgeafbel node lines occur (fig.2).
In fig[d the eigenmodes of a rectangular plate with a diffeeeim side lengths of 0.5 % are
depicted. For the rectangular plate eigenfrequencies Zard slightly different, while for
the quadratic plate they are identical.

State Space Model

Each of the above introduced eigenmodgscontributes to the overall deflectian(t) by
superposition according to

n

w(t) = eq(t) = Z ®iqi (1), 2)

i=1
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Figure 2: Eigenmodes 1 to 3 of the Rectangular Plate with lyeagual side lengths

where theg;(t) are the modal coordinates. Choosing the modal coordinaggheir time-
derivatives as state-vectarthe state and output equation can be written as

X:< 0 ! )x+<0>u+<0>z 3)
~diag(w}) —diag(2&;w;) B E

y=(C 0)x, (4)

where thet; are Raleigh damping-coefficients and theare the eigenfrequencies for théh
eigenmode. Thd3-matrix has as many rows as eigenmodes and as many columituas a
ators. The matrixC has as many rows as sensors and as many columns as eigenfodes.
voltage applied to an actuator corresponds to a certairatiuney and vice versa for the sensor.
Therefore, the moments on the right-hand side dfleq.1 candsiped by piezo patches, and
the modal coordinateg (¢) can be reconstructed from the measured local curvaturénhéviat
matical piezo patch models can be foundin[€, 10], and theifipeoefficients for materials
are provided by the manufacturer (see €.j. [2]).

Controller and Observer Design

The control law for a state space controller is giveruby K, w— K X, where the set point
may be considered zero. A possible design procedure isdtertite position of the open-loop
poles in the complex plane towards the real axis therefaneasing the damping.

A state space controller requires all states to be knowrceSamly physical quanti-
ties can be measured the modal coordingtés and their derivativeg;(¢) must be recon-
structed by an observer. For the above defined state spaeensi#4) a 4th-order Luenberger-
Observer is designed by

X = (A — HC)X + Bu, (5)

where the observer gain matitkis computed by minimizing a quadratic criterion by solving
the resulting Riccati-equation.

FREQUENCY RESPONSE MODE (FRM)

Every continuous linear system has an infinite number ofreigeles with associated eigen-
values. In order to achieve acceptable accuracy a small @uofilmnodes:,..; associated with
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the lowest eigenvalues is typically chosen for controllesign. However, due to external
forces or moments a large number of modes may be necessanmattantee a desired accu-
racy. This problem may be overcome by the use of a particolatisn, which incorporates
the effect of higher order modes.

The particular solution for a modal model with external &ion f(t) = FeiS%t is
given by

n

W, = i . fiq’z‘T‘ Foo Wo=Wlo—0=) (biq;iTF =K.F, (6)
i1 w; — QO + QJCZ‘QOUJZ‘ 1 w;

where()y = 0 yields a particular static modé/, which may be treated as an additional
eigenmode of the system. However, the definition of propentary conditions for the com-
putation of [®) is difficult, especially in the presence gfidibody modes.

One way to overcome this problem is the FRM. Using{nequal to half the first
eigenfrequency of the system the FRMgr,; is also computed by[16). The approximate
overall solutionw(t) of the modal system is then given by

w(t) ~ Y ¢:0,(t) + Wrrmarru (), (7
i=1

whereargra(t) is a scaling factor for the FRM. If the bandwidth of the extdrexcitation
is equal or smaller than the bandwidth of the modell&q.(7)yald a good result. For each
position of an external excitation a dedicated FRM has todoled. The FRM adds a constant
to the transfer functions of the system, thus altering oy @nd zeros but not the poles.
In fig[3 the frequency response of a high-order model, a ediversion, and a reduced ver-
sion plus FRM are plotted. More details can be found.in [12][14], and [13]. It should
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50 | — 15 modes W
=+ 5modes '
‘< 5modes + FRM

phase [deg]

frequency [rad/s]

Figure 3: Effect of the Frequency Response Mode (FRM)

be noted that incorporation of the FRM is an important meare/bid or at least minimize
spillover phenomena where unmodelled higher modes afiecttate vector estimate (obser-
vation spillover).
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PLACEMENT OF SENSORS AND ACTUATORS

The above mentioned spillover problem is closely assatiati¢h optimality in observabil-
ity and controllability. In order to optimize these propesta quantitative criterion must be
defined. Using either the observability gramidfy or the controllability gramiai’, the fol-
lowing criterion is utilized[[F]:

C = trace(W) Lj(e)i()m (8)

In this criteriono()\;) is the standard deviation of the eigenvalugsof the gramian. This
formulation can be shown to be equal to criterions usingdhenorm [9], [€].

Symmetric M odes of the Quadratic Plate

In the case of the quadratic plate symmetric modes with egjgehfrequencies arise (fi.1).
Using only one sensor or actuator, respectively, the gnasniall become singular. In the case
of closely lying eigenvalues the gramians will be ill-caimtied. This problem can only be
overcome by applying additional sensors or actuators.

Numerical Issues

The implementation of{8) requires that for each point alangrid the criterion has to be
evaluated and stored. Each evaluation[®f (8) comprisesaloelation of the current grami-
ans, their eigenvalues and determinant. To speed up theutatigm the position grid is re-
fined iteratively, symmetries are exploited, and the botiedaf the plate are disregarded for
physical reasons. A plot of the criteridd (8) is given in[figl4he first sensor position is fixed
at the "x” and the second sensor position is optimized.

SIMULATION AND EXPERIMENT

The experiment consists of a quadratic plate made of 1mnt stetal (steel) and a side length
of 0.5m clamped on all sides in a massive frame. Piezo pafghesth a length of 35mm and
a thickness of 1mm (maximum voltage 250V) were applied tooghtémal positions. In fi§l5
the plate with applied sensors and actuators is shown. friid and 2 are used for control
input, the third patch is used for excitation. Additionatelerometers are used for validation
or control input, respectively.

Simulation Results

In fig[@ the transfer function from disturbance to actuat@s glotted. Only the first 3 eigen-

modes are included, the observer is designed for only 2 migdes. This simulation result

indicates a fundamental limitation of the plate: Additibdamping can only be added over a
small frequency range, since the disturbance and the ¢amtiat are not collocated. In order

to achieve a larger bandwidth more actuators have to beegpiymmetric modes require
additional pairs of actuators.
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Figure 6: Simulated transfer functions frong;y e 7. Transfer functions from disturbance
disturbance to actuator 2 (open and closeéhd sensor 1 (theoretical and real)

loop)

Experimental Results

Model Validation

In fig[d the predicted and measured transfer functions ketvaésturbance and sensor 1 are
plotted. Only the first eigenfrequency shows a good agretrakknther modes exhibit consid-
erable deviations due to increased mass and bending stiffiiesensor and actuator locations,
geometrical imperfections, non-uniform clamping corati, and different mode shapes (see
section "Eigenmodes of the Quadratic Plate”).

During closed loop operation the collocated sensor pattiteded good results, while
an additional collocated accelerometer detected poooprénce. This can be referred to the
fact that using collocation the system response is onlyrotedl locally and a good perfor-
mance of different measurements cannot be guarariteed [3].
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PT2-Controller with Accelerometer

Using the accelerometer as sensor two 2nd-order local altems were implemented at a
resonance frequency of 167Hz, where a significant peak implea-loop transfer function
was measured. The controller transfer function is given by

P P

Ge = = : 9
© st tamiges + 1 9.08377s? + 3812705 41 ®)

This controller acts at a resonance frequency of 167Hz widlraping of¢ = 0.02 (small
bandwidth). Due to the non-symmetric mode shapes diffegairts P; were used for each
collocated sensor/actuator paft,(= 45, P, = 12). Using these gains peak control inputs
of 200V were observed. The dominant eigenmode at 167Hz duildttenuated by 17dB.
Results are plotted in figurEs 8 did 9.
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Figure 8: Open-loop accelerations Figure 9: Closed-loop accelerations

CONCLUSIONS

The active damping of a quadratic plate clamped on all sidegpiezo patches as actuators
is the subject of this work. A state-space controller withdaddeedback as well as local 2nd-
order controllers with acceleration feedback have beetemented and compared. In order
to account for actuator effects and to avoid spillover thegiiency Response Modes (FRM)
were incorporated into the model.

Actuators and sensors have been optimally placed by nuafigrievaluating a crite-
rion. Due to non-collocated disturbance and actuators ardgnall bandwidth for vibration
damping is feasible if a small number of actuators is appligds fact could be shown both
in simulations and experimentally. Additional problemsrevposed by the symmetric eigen-
modes and by the local reinforcement of the plate at colémtaensor/actuator pairs. A 2nd-
order controller with acceleration feedback was desigreedli@rnative, gaining a reduction
of 17dB for mode at 167Hz.

Improvements in this application can be expected from ralocated sensor/actuator
pairs and from thinner yet stronger patches. A detailed iir&dysis would produce a more
realistic model. Finally, the most suitable control stawetfor non-collocated disturbances is
anHs.-design, which allows for maximum damping bandwidth foregi set of sensors and
actuators.
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