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Abstract 
Based on better understanding of the lattice vibration modes, two simple spring-mass models are 
constructed in order to estimate the frequencies on both the lower and upper edges of the lowest 
locally resonant band gaps of both the two- and three-dimensional ternary locally resonant 
phononic crystals. The parameters of the models are given in a reasonable way based on the 
physical insight of the band gap mechanism. Both the lumped-mass methods and our models are 
used in the study of the influences of structural and the material parameters on frequencies on 
both edges of the lowest gaps of in the ternary locally resonant phononic crystals. The analytical 
estimations using our models and the theoretical predictions with the lumped-mass method are in 
good agreement. The heuristic models are helpful for better understanding of the locally resonant 
band gap mechanism, as well as better estimation of the band edge frequencies. 

INTRODUCTION 

In recent years, a great deal of work has been devoted to the study of the propagation of 
elastic or acoustic wave in periodic structures made of different materials[1-13], which 
have been named the phononic crystals (PCs)[1] by analogy with the photonic crystals[14,15] 
for electromagnetic waves. Because of the periodicity in such structures, there exist 
frequency ranges in which elastic waves are forbidden. This phenomenon can be of real 
interest because of the rich physics of elastic system, where the wave can have mixed 
longitudinal and transverse modes, and where a large contrast between the elastic 
parameters is allowed. A famous example is the locally resonant (LR) PCs consisting of 
very soft rubber[2,4-8,10,11] (with an elastic constant of five orders lower than common 
solids) and other components. These new materials are most likely to obtain the 
low-frequency gaps with structures of small dimensions, leading to promising 
applications such as low-frequency vibration/noise insulations. 

The lumped-mass (LM) method[9,10,12] is employed in the study of two-dimensional 
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(2D) and three-dimensional (3D) ternary LR PCs in this paper. It has been concluded[10,12] 
that the LM method converges faster than the traditional techniques and its convergence 
is insensitive to the sharp variation of elastic constants on the interfaces inside PCs. This 
advantage was unique in comparison with other works[5,13] on the improvement of 
traditional methods. 

Several analog models have been used in the research of the mechanism of 
low-frequency band gaps in the LR PCs[5-7,11]. A simple mechanical model of masses and 
springs was firstly used by Goffaux, et.al.[5,6] in order to fit the transmission spectra near 
the first resonant peak and the edges of the first band gap in a 2D ternary LR PCs. We also 
established a similar model in order to clarify the origin of the LR band gaps in a 2D 
binary LR PCs[11]. However, the parameters of these models[5,6,11] are just given, not 
calculated with reasonable method based on physical insights. Hirsekorn used a different 
simple model[7] to evaluate the frequencies on the lower edges of the band gaps in a 2D 
ternary LR PCs, where the parameters are derived with reasonable way. However, the 
thin rubber layers in arc shape are treated as simple equal-thickness flat ones in his 
model[7], and the model can only be used to simulate the lower edges of the band gaps 
with slight mismatches. Whether or no, Hirsekorn’s work[7] does motivate the works in 
this paper. 

In this paper, we restudied the lattice vibration modes that concerns the formation 
of the lowest LR band gaps of typical 2D[6] and 3D[2] ternary PCs with the LM method. 
Both them consist of lattice of heavy cores (Au cylinders or Pb spheres) coated with 
silicon rubber and immersed in epoxy. An additional analog model is constructed to 
represent the vibration modes at the upper edges of the LR band gap. The parameters of 
the two models are calculated based on clear understanding of the physical insight. The 
two models and the arithmetic of its parameters are validated with the LM method by 
changing the structural and material parameters of the 2D and 3D ternary LR PCs. 

LATTICE VIBRATION MODES OF THE 2D AND 3D TERNARY LR PCS 

Figure 1(a) illustrates the in-plane mode band structure of typical 2D ternary LR PCs[6] 
calculated with the lumped-mass method. The calculated lattice vibration modes at points 
L1, L2,3 and L'2,3 in Fig. 1(a) are shown in Fig. 1(b-d). 
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Figure 1 – (a)The in-plane mode band structure of typical 2D ternary LR PCs[6] which consist of 
square array of coated Au cylinders immersed in epoxy. The shadowed region represents the 
lowest band gap. (b,c,d) Lattice displacement vectors in the 2D ternary LR PCs corresponding to 
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(b)L1, (c)L2,3 and (d)L'2,3 in Fig. 1(a), respectively. The direction and the length of each arrow 
represent the direction and amplitude of the displacement vector at the starting point of the arrow. 
The shadowed region, the inside and the outside represent the coating rubber, the Au core and the 
epoxy host respectively. The displacement vectors in the zone surrounded by dasheddotted line in 
Fig. (d) are magnified 10 times. 

The clockwork-like torsion vibration mode illustrated in Fig. 1(b) is similar to the 
first LR mode[11] in the 2D binary LR PCs, which can hardly interact with the traveling 
waves with long wavelength in the host media, and for the same reason[11] no gap is 
generated.  

The lowest LR band gap in the 2D ternary LR PCs is generated by the second and 
third LR modes illustrated in Fig. 1(c) where the Au core vibrates as one particle and the 
composition of the forces from the oscillator to the host media generates the lowest band 
gap at its eigenfrequency. 

The two vibration modes at L'2,3 (the upper edge of the lowest band gap) are similar 
with their corresponding LR modes at L2,3, while the vibration of the host media is also 
involved and in the reversed phase with that of the core. The corresponding wave vector 
locates at point Г, which means that the vibrations in adjacent lattice are in same phase. 

We made similar studies on the typical 3D ternary LR PCs[2]. Figure 2 illustrates the 
calculated band structure of it and Fig. 3 illustrates the lattice vibration modes 
corresponding to points L1,2,3, L4,5,6 and L'4,5,6 in Fig. 2. 

Same clockwork-like torsion LR mode that cannot generate a gap is illustrated in 
Fig. 3(a). The lowest LR band gap in 3D ternary LR PCs is generated by the 4-6th LR 
modes L4,5,6 that is combined together and illustrated in Fig. 3(b). The corresponding 
lattice vibration mode is almost the same with that illustrated in Fig. 1(c), i.e. the core 
vibrates conformably as one particle and the coating acting as springs. Other three 
vibration modes at L'4,5,6 in Fig. 2 illustrated in Fig. 3(c) (at the upper edge of the lowest 
band gap) are similar with their corresponding LR modes at L4,5,6.  
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Figure 2 –The band structure of typical 3D[2] ternary LR PCs that consist of simple cubic arrays 
of coated Pb spheres immersed in epoxy. The shadowed region represents the lowest band gap. 

ANALOG MODELS AND CALCULATION OF PARAMETERS OF IT 

Based on above discussions, we can conclude that: (1) The vibration modes on the lower 
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edge of the lowest band gaps in both the 2D and the 3D LR PCs correspond to the 
mass-spring model illustrated in Fig. 4(d). (2) The vibration modes on the upper edge of 
the lowest band gaps in both the 2D and the 3D LR PCs can be described with a new 
“mass-spring-mass” model illustrated in Fig. 4(e). In the model, the new particles m2 
represents the equivalent mass of host media in a lattice. 
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Figure 3 –Lattice displacement vectors in three perpendicular cutaway interfaces inside the 3D 
ternary LR PCs corresponding to (a)L1,2,3, (b)L4,5,6 and (c)L'4,5,6 in Fig. 2 respectively. The 
direction and the length of each arrow represent the direction and amplitude of the displacement 
vector at the starting point of the arrow. The shadowed region, the inside and the outside 
represent the coating rubber, Pb core and epoxy host respectively. 
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Figure 4 – (a) The cross section of the 2D and 3D ternary LR PCs. (b)(c) Sketch maps explaining 
the calculation methods of parameters in the analog models corresponding 2D and 3D ternary 
LR PCs respectively.(d,e)Analog models corresponding to vibration modes on the (d)lower and 
(e)upper edges of the lowest LR band gap. 
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As the phenomena of the 2D and 3D ternary LR PCs around the lowest band gap 
can be easily described with the sample models in Figs. 4(d) and 4(e), they may be used to 
evaluate the frequencies on the edges of the lowest band gap. This evaluation is much 
helpful for the simplification of the design of the LR PCs. However, accurate evaluations 
need the correct calculation of the parameters in the analog models. Here, three 
calculation methods are engaged and compared in the evaluation of frequencies of the 
lowest band gaps in 2D and 3D ternary LR PCs. 

Based on the detailed vibration modes illustrated in Figs. 1(c), 1(d), 3(b) and 3(c), 
we can see that only rubbers in region A (illustrated in Fig. 4(a-c)) are mainly compressed 
and stretched when the core vibrates up and down. So stiffness k in Fig. 2 can be 
calculated with parameters in region A. 

Hirsekorn-like method[7] is engaged as method I in this paper, where the m1 and m2 
in Fig. 4(d-e) are considered as mass of the core and epoxy host in a lattice respectively 
and the rubber in region A is treated as two layers with equal-thickness ∆r for simpleness. 
Thus, for the typical 2D ternary LR PCs, 
 2 2 2

1 2;  ( )core core core host host extm m r m m a rρ π ρ π= = = = −  (1) 
 11 core ext core4 /( )k C r r r= −  (2) 
and for the typical 3D one, 
 3 3 3

1 2(4 / 3) ;  ( (4 / 3) )core core core host host extm m r m m a rρ π ρ π= = = = −  (3) 
 2

11 core ext core2 /( )k C r r rπ= −  (4) 
where C11=λcoating+2µcoating, λcoating and µcoating are the Lame constants of the rubber in the 
coating layer. 

The frequencies on the edges of the lowest LR band gap can thus be evaluated with 
 1 1

1 1 2 1 2 1 2(2 ) / ;    (2 ) ( ) /( )f k m f k m m m mπ π− −= = +  (5) 
Using method I and the analog models, we evaluate the frequencies of the lowest 

band gap in 2D and 3D ternary LR PCs with different structural and material parameters 
(dotted lines in Figs. 5-9) and compared them with that calculated with the LM method 
(solid lines with dots in Figs. 5-9). 

From these figures, we can see that the frequencies evaluated with method I are 
higher than the therotical results, especially at the upper edge of the band gap. The analog 
models with parameters calculated with method I match with the 2D and 3D LR PCs 
basically only at the lower edges of their band gaps. These mismatches are due to the 
underestimate of k, i.e. the equivalent stiffness of coating layer in region A in Fig. 4(a-c). 
Hirsekorn’s simplification where the rubber is treated as a layer with equal-thickness ∆r 
is not accurate because that only the thickness (along the direction of wave propagation) 
in the coating layer at the center of region A is ∆r, and it is longer than ∆r at other parts in 
region A. In method II, we improved it by regarding each slender bar along the direction 
of wave propagation in region A as a tiny spring, and stiffness k as the parallel connection 
of all these tiny springs. Thus, using the integral technique, we have the new effective 
stiffness k for 2D case as 
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∫
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or for the 3D case as 
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∫∫

∫ ∫
(7) 

Using method II and the analog models, we evaluate again the frequencies of the 
lowest band gap in 2D and 3D ternary LR PCs with different structural and material 
parameters (dashed lines in Figs. 5-9) and compared them with that calculated with the 
LM method (solid lines with dots in Figs. 5-9). 

We can see that the frequencies evaluated with method II are much accurate than 
that evaluated with method I. However, there are still large mismatch according to the 
upper edges of the band gap. Especially in Fig. 7, when the density of the coating layer 
changes, the evaluated frequencies are changeless according to method I and II while the 
actual values are obviously in the reversed ratio with it. This is due to the ignorance of the 
density of coating layer in the calculation of parameters in the analog models. 

We can found that when the LR PCs vibrate as the model in Fig. 4(e) (at the upper 
edge of the band gap), there exists a standing point that is immovable in the 
corresponding vibration modes. Thus the mass of the coating layer in region A can be 
divided according to the position of the standing point and add on m1 and m2 respectively. 
Based on the detailed vibration modes illustrated in Figs. 1(d) and 3(c), we can see that 
the coating layer in region B vibrates as the attachment of the host layer, which means 
that the mass of it can be add on m2 directly. Thus in method III, the calculations of m1 and 
m2 are changed as 
 1 2/(1 );   /(1 )core A host B Am m m m m m mα α α= + + = + + +  (8) 
 2 1/ ( ) /( )A B host A corem m m m m m mα = = + + +  (9) 

For the 2D case, the mass of the coating layer in region A and B are 
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∫  (10) 

As for the 3D case, 
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Figure 5 – Frequencies on the edges of the lowest band gap in the typical (a)2D and (b)3D 
ternary LR PCs for several densities of the core. 
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Figure 6 – Frequencies on the edges of the lowest band gap in the typical (a)2D and (b)3D 
ternary LR PCs for several densities of the host material. 
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Figure 7 – Frequencies on the edges of the lowest band gap in the typical (a)2D and (b)3D 
ternary LR PCs for several densities of the coating material. 
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Figure 8 – Frequencies on the edges of the lowest band gap in the typical (a)2D and (b)3D 
ternary LR PCs for several radiuses of the core. 
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Figure 9 – Frequencies on the edges of the lowest band gap in the typical (a)2D and (b)3D 
ternary LR PCs for several outer radiuses of the coating layer. 
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The frequencies evaluated with method III and illustrated as solid lines in Figs. 5-9 
match well with the theoretical results eventually on both the upper and the lower edge of 
the LR band gaps. 

CONCLUSIONS 

The vibration modes at the lower and the upper edges of lowest band gaps of both the two 
and three dimensional ternary locally resonant phononic crystals can be described with 
the “mass-spring-fixture” and the “mass-spring-mass” models respectively. The 
parameters of the models are given in a reasonable way based on the physical insight of 
the band gap mechanism. The analytical estimations with the models and the theoretical 
predictions with the lumped-mass method are in good agreement, especially for the upper 
edge of the locally resonant band gap. The proposal of these models are heuristic and 
helpful for better understanding of the locally resonant band gap mechanism as well as 
better estimation of the corresponding band edge frequencies. The latter make it possible 
for simple design of locally resonant gaps in phononic crystals, which is important for 
their applications as low frequency vibration/noise shelters. 
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