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Abstract

In the fields of active control, active or passive damping, energy scavenging, most of the
applications are based on the use of electro-mechanical transducers. For many reasons,
piezoelectric devices are very often chosen to insure the conversion between the mechanical
and the electrical quantities. Nevertheless, electromagnetic devices can be in some cases of
great interest. This study is focused on the use of a contact-less electromagnetic actuator for
active or passive damping and energy scavenging purpose. Its great advantage compared to
piezoelectric transducers is the absence of purely mechanical coupling. A reliable multi-
physic modelling can thus easily be obtained and optimisation studies can be performed. The
studied structure is an academic cantilever beam around its first bending mode. This mono-
dimensional case allows analytical developments and some interesting results are found
concerning the energy balance between the structure and the feedback loop. For example, it is
shown that the optimal feedback for passive damping is different from the one for energy
scavenging.

INTRODUCTION

To reduce the level of structural dynamic responses, a solution consists in increasing
damping. This can be done either passively or by active strategies [5] [6]. Passive
techniques include both the use of dissipative materials and the use of
electromechanical converters connected to passive electrical circuits. In both cases,
the energy dissipation is produced by Joule effect. The idea to store the energy
instead of dissipating it has recently appeared. This approach called “energy
scavenging” or “energy harvesting” is very promising as it could continuously supply
the electrical power for small mobile devices. To insure the energy conversion,
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piezoelectric materials are used in most of the recent developments [1] [3] [4]
whereas electromagnetic transducers are more rarely studied [2]. This paper is
focused on the use of a contact-less electromagnetic actuator for active or passive
damping and energy scavenging. The main interest of this kind of actuator is that
there is no purely mechanical coupling, leading to the possibility of obtaining a
simple but reliable multi-physic modelling. Both Finite Element (FE) and analytical
studies can thus easily be performed.

EXPERIMENTAL SETUP

The chosen structure (Fig. 1) is a simple cantilever beam and only the first bending
mode is studied. The beam (525 x 50 x 9.6 mm) is made of steel, strongly fixed at one
end on a 15 tons seismic mass and free at the other end. Two similar instrumentations
are mounted at points 1 and 2 respectively located at 155 and 335 mm of the fixed
end. Each one of these instrumentations is constituted by a ‘“homemade”
electromagnetic actuator, a force cell and an accelerometer. The actuator consists of
a permanent magnet fixed to the ground and a coil placed in the induction field of the
magnet and linked to the structure by a very thin aluminium cone. The force cells are
located between the actuators and the structure, whereas the accelerometers are
located on the other side of the beam. The actuator located at point 1 is connected to a
power amplifier in order to provide the external excitation, the one located at point 2
is connected to the feedback loop. A Hall effect probe is used to measure the driving
current in the coils.

Figure I — The experimental setup

MODELLING

A multi-physic modelling of the system has been built. Its general scheme is given
figure 2. The beam is represented by a 2 input 2 output Linear Time Invariant (LTI)
system linking the normal forces f, f, applied by the actuators at points 1, 2 to the
transverse displacements x;, x, at the same points. The feedback loop is modelled by a
mono-dimensional transfer function G(s) linking x; to f;.



ICSV13, July 2-6, 2006, Vienna, Austria

X
i» Cantilever Beam | ——»
ya LTI System x5
> H(s)
Feedback Loop
G(s)

Figure 2 — General modelling of the coupled system

The cantilever beam

The Finite Element (FE) model of the cantilever beam is made of classical Euler-
Bernoulli elements. The masses of the actuators and sensors are represented by
lumped masses (52 grams) at the corresponding nodes. The measured material density
is 7850 kg.m™. In order to determine the material Young’s modulus, an experimental
modal analysis of the four first bending modes has been performed, leading to the
frequencies and damping indicated in table 1. The initial Young’s modulus was
updated to the value of 201 600 MPa in order to have the best prediction of the first
modal frequency. Damping is assumed to be modal and the experimental damping
factors are used for all the numerical simulations.

Table 1 — Results of the experimental and numerical modal analysis of the beam

Mode 1 Mode 2 Mode 3 Mode 4
Exp. Frequency (Hz) 28.09 174.2 478.7 942.0
Exp. Damping (%) 0.205 0.195 0.098 0.158
Num. Frequency (Hz) 28.11 174.1 477.6 970.6

As the present study only concerns the first bending mode, a condensation of
the FE model is then performed where only the first mode is considered. Finally, by
considering only the two degrees of freedom associated to the transversal
displacement at points 1 and 2, the three transfer functions of the beam LTI system
are obtained:

a
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where the scalar numerators a,, are related to the normalised real eigenmodes and the
additive terms kﬁq are scalar residues which represent the static contribution of the

out-of-band modes. The forced responses are then given by:
Xy =hy fi+hy, £, Xy =hy fi+hy, [ (2)

The validity of the initial and condensed FE models is illustrated figure 3 where
the experimental and simulated Frequency Response Functions (FRF) /4, are
presented. In the considered frequency band, the difference between the initial and the
condensed model is negligible and the difference between these models and the
experimental FRF is acceptable.
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Figure 3 — FRF hy,: initial FEM (), condensed FEM (O), experimental (+)

The electromagnetic feedback

The electromagnetic actuator and the feedback loop are modelled by the circuit
given Fig.4. R, and L, are respectively the resistance and inductance of the actuator,
Fem 1is the electromotive force, i and V are respectively the electrical current and
voltage in the loop, Z;is the feedback impedance.

Figure 4 — Electric modelling of the actuator and feedback impedance

The governing equations (3) describe the electrical circuit (left side) and the
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electro-mechanical coupling (middle) where C, is the coupling coefficient of the
actuator. The transfer function of the feedback loop is then easily obtained (right
side). The physical parameters have been identified to the following values:
Ry=0.70 Q, L, =0.070 mH, C,=2.1 N.A™"

V:—Rbi—Lb£+Fem fo=Coxi C’s
dt o (S):W )
v=z,i Fem = exdt T, T LS
The coupled system
Reporting (4) into (2) gives the output x;, x, of the closed loop system:
x. =|h —GLf x:Lf (4)
U T 1+ Gy, ) P 1+Ghy !
QUANTIFYING ENERGIES

For both passive or active damping and energy scavenging applications, it is
interesting to quantify the energies involved in the two actuators and their evolution
versus the feedback impedance. Numerical simulations will first be presented, then
experimental results will be exposed and finally a simplified analytic model will be
used to justify the observed properties.

Numerical simulations

The previously described multi-physic modelling is used to predict the behaviour of
the coupled system for different values of the feedback impedance Z; For the
interpretations to be more convenient, only resistive impedance is studied here, i.e. Z;
is purely real, and the total resistive impedance Z =Z,+ R, is considered in the

following developments. Let us consider a harmonic excitation force f;. The average
mechanical energies E1, E; involved in the two actuators are given by:

E, =%Re<af1) E, :%Re(afz) (5)

where the notation X is used for the complex conjugate of X. Figure 5 shows the
evolutions of these two energies versus the excitation frequency and the value of the
resistive feedback. The energy in the feedback actuator £, exhibits two ridges which
may be particularly interesting for an energy scavenging application. Figure 6-a
represents the root locus of the closed loop system when decreasing the resistive
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impedance Z from +oo to 0. The two ridges of figure 5 correspond to the two
extremities of the root locus: point 4 is the open loop system (Z = +o) and
corresponds to the cantilever beam without feedback; point £ is the short circuit
system (Z = 0) and represents a conservative system where the negative resistance Zr
would compensate the physical resistance of the coil Rj.
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Figure 5 — Evolution of the energies in actuator 1 (a) and 2 (b) versus frequency and total
feedback resistance
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Figure 6 — Root locus of the closed loop system (a); maximal energies in the actuators E; (+)
and E, (®) versus total feedback resistance Z (b)

It is also interesting to observe the maximal value of the energies for each value
of the resistance Z (figure 6-b). The two peaks (B,, D+2) of the energy FE, are the best
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points for energy scavenging. A minimum value of both £, and E, can be found in
between those peaks at point C. It corresponds in fact to the higher damping which
can be produced as illustrated on the root locus.

Experimental results

Only a part of the previous results could be verified experimentally as no negative
resistance was used for Z;. As a consequence, the minimum value of the total
resistance Z was the resistance of the coil R, = 0.7 Q. Nevertheless, the figure 7
shows a very good agreement between the numerical predictions and the
experimental points.
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Figure 7 — Maximal energies in the actuators versus total feedback resistance Z: simulated
E; (¥); simulated E, (o), experimental E; (Q), experimental E2 (O)

Analytical study

To justify the previous observation with an analytical study, the model of the beam is
once again simplified to a 1 degree of freedom oscillator:

(ms2+cs+k)x=f1—fz (6)

where the parameters m, c, k are chosen to fit the first bending mode of the beam.
This simplification corresponds to the situation where the points 1 and 2 would be
coincident, i.e. the two actuators would be at the same location.

Developing the closed loop transfer function and reporting it into (5) leads to the
expressions of the average energies E;, E,. As it can be seen in figure 6, the
frequencies of the two points B and D are very close to the open loop and short circuit
frequencies respectively. Taking into account this approximation allows the
calculation of the two total resistive impedances which maximise the energy £, (7)
and lead to the very simple properties (8) where £z and &p are the modal damping of
the closed loop system for the impedances Z5 and Z) respectively.

/ c’ c’ L, kL
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Ez/Elzl/Z €y ~E&, =28 (8)

CONCLUSIONS

This paper deals with the optimisation of an electromagnetic feedback for passive
damping and energy scavenging applications. Some interesting results are found: (i)
for a given external excitation force, two values of the feedback impedance maximise
the harvested energy; (ii) when applying these values, the damping of the closed loop
system is approximately twice the structural (or open loop) damping and the
harvested energy is approximately half of the excitation energy; (iii) the impedance
value which leads to the highest damping for the closed loop system also leads to a
very low harvested energy although the harvested energy is nearly equal to the
excitation one.

These first results are demonstrated numerically, experimentally and
analytically. Future works will include the active damping situation and the
optimisation of more complex feedback impedances. In particular, nonlinear feedback
used for energy harvesting [4] will be simulated, experimentally implemented and
hopefully optimised.
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