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Abstract 
Robust identification of lightly damped flexible structures, because of high amplitude modes 
in resonance frequencies, is a challenging task. In this paper, two different methods for robust 
identification of a lightly damped flexible beam are applied and compared. The first method 
is called NSSE using stochastic assumptions on the uncertainties and the second one is 
ellipsoid set-membership method by deterministic assumptions on the noise and unmodelled 
dynamics. Identification results show that NSSE with integrated random walk process gives 
better model for the in-bandwidth modes and unmodelled dynamics in comparison with other 
specified methods. In fact the identified model will exhibit a good compromise between the 
performance and robust stability of the controller designed base on it and its uncertainty band. 

INTRODUCTION 

Robust control theory plays an important role in the application of control theory in 
practical problems. The main concept is to consider a physical system as an uncertain 
model which may be represented as a family of mathematical models. Using robust 
control techniques, all models in this family will be stabilized in an appropriate 
manner. This family is described by a nominal model and a bounded uncertainty. 
Thus it is customary to identify not only a nominal model, but also an uncertainty 
bound associated to this nominal model. Identification methods producing a nominal 
model and its associated uncertainty are known as “Robust Identification” or 
“(Robust) Control-Oriented Identification” methods. Because of the outspread use of 
robust control techniques in practical problems, robust identification is an area which 
has received a growing interest of researchers since beginning of 1990’s due to the 
weakness of classical identification methods to produce suitable models for robust 
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control theory. Robust identification algorithms use a priori information on system 
and its input-output data (posteriori information) to produce a nominal model and its 
associated uncertainty.  
Two main philosophies for description of model’s uncertainties have been used. The 
first one is based on statistical assumptions and produces so-called “soft bound” on 
model’s uncertainty. Second approach is based on deterministic hypothesizes and 
gives “hard bound” on uncertainty. Indeed in this approach, uncertainties are assumed 
to be “Unknown but Bounded” (UBB) [1].  Deterministic hypothesis on model’s 
uncertainties, leads to set membership identification methodologies.  
In all system identification problems, perturbation are potentially arise form two main 
sources: a variance error due to the measurement noises and a bias term due to effect 
of unmodeled dynamics (dynamics that have not been included by nominal estimated 
model- also known as model error). The nature of these two error types is quite 
different. Variance error generally uncorrelated with the input signal (in open loop 
data collection case), but bias error is strongly depends on nominal model’s structure 
and identification experiment input signal [1].  
Three main approaches for robust identification have been addressed in the literature, 
namely: 

1. Stochastic Embedding (SE) 
2. Model Error Modeling (MEM) 
3. Set Membership (SM) 

SE is a frequency domain method based on statistical hypothesizes about 
uncertainties. This method potentially has the ability of handling both variance and 
bias errors but is mostly used for the aim of non-parametric uncertainties modeling [2, 
25, 26, 27]. This approach to robust identification was first introduced by Goodwin in 
[25]. Later in [26] this method was modified by using maximum likelihood technique 
for the estimating of parameters. To alleviate the problems associated with the 
identification procedure in [26], in [2] unmodeled dynamics relevant uncertainties are 
represented by a non stationary stochastic process whose variance increases with 
frequency. This method which is known as “Non-Stationary Stochastic Embedding”, 
has a high ability of capturing typical cases of non-parametric uncertainties, including 
systems with unmodeled lightly damped modes [2].    
Finally SM is a time/frequency domain method, based on deterministic assumptions 
on system’s perturbations. In fact uncertainties deem to be unknown but bounded by a 
suitable norm. In the first works the idea is used for state estimation [5, 6].   Later, 
SM theory is employed for the aim of system identification [7, 8]. Because of its 
deterministic framework, this approach to robust identification is more popular than 
SE and other statistical based approaches. Both parametric and non-parametric 
uncertainties can be accounted in SM identification problem. In [7], [8], [9] and [10] 
just parametric uncertainties are considered while [1], [4], [11], [12], [13], [14] and 
[15] deal with parametric and non-parametric uncertainties.  
Fundamentally lightly damped flexible structures are distributed parameter systems 
and thus have infinite dimensional analytic models. In order to design a controller one 
has to have a finite dimensional model. Using truncated or reduced order model, 
“spill over effect” is a possible phenomenon. Spill over effect is called to the 
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degradation of controller’s performance due to excitation of unmodeled dynamics 
[16]. To fulfill this problem robust controller is a beneficial tool. So, robust 
identification of lightly damped flexible structures is an evident necessity. The 
following section describes briefly the robust identification algorithms used in 
simulations. In section three, the characteristics of the simply-supported beam and the 
results of simulation bases on three robust identification techniques are explained and 
finally conclusions come.  
  

ROBUST IDENTIFICATION PROBLEM FORMULATION 

Non-Stationary Stochastic Embedding Technique 
 
Our approach in this section is similar to [2], which can be present as follow:  
Suppose that the true system’s frequency response is given as: 
 
                                 )()()( 0 ωωω jGjGjG ∆+=                                 (1)          
where )(0 ωjG is the nominal model that we want to estimate and )( ωjG∆  is a 
stochastic process independent of nominal model whose variance increases with 
frequency and is stand for model errors. Let kĜ to be the noisy observations of the 
true system at certain frequency: 
 
     mkvjgG kkk ,..,2,1;)(ˆ =+= ω  (2)  
where kv is the measurement noise. One way to estimating the nominal model is to 
parameterize it using some orthonormal basis as [18,19]: 
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where T
nbbb ]...[ 21=B is the vector of basis functions and θ  is the vector of 

parameters. It is also possible to use this structure to determine )( ωjG∆ . So (1) can be 
represented as follow: 
                                                    Λ+= θθ TTG BB                                                    (4) 

     
where Λ  is the (integrated) random walk process over frequency. Now by (2) and (3): 

 
                                         (5) 

So the non-stationary stochastic embedding robust identification process cab be stated 
as follow: 
1. Point-wise least square estimation of the transfer function at certain frequencies. 
The input u for this purpose must be sum of sinusoids. This step delivers a raw 
estimation of the real transfer function at certain frequencies which is considered 

k
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as kĜ . Additionally, statistical properties of the noise are calculated assuming 
Gaussian white noise.  
2. Choice of basis functions B.  
3. Estimation of the parameter θ  and the (integrated) random walk process Λ  in (5) 
based on the frequency function point estimation kĜ  according to following 
procedure: 
a) Least square estimation of θbased on frequency point estimation kĜ . 
b) Using this estimate for model error parameterization as shown in (4). 
c) Computation of an unbiased estimate of the variance of the (integrated) random 
walk process. 
d) Quantification of the model error for any frequency (calculation of its statistical 
properties). 
 
Set Membership Technique  
 
Suppose that N samples of input-output data that have been generated by real system 
G(q) are available: 
 
     )()()()( kvkuqGky mm +=                                             (6)   
  
where v(k) is the measurement noise and is bounded by a suitable norm: 
 
      )()( kkv δ

β
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It is possible to represent the real system as follow: 

 
                                      (8) 
 

where ),( θqG  is the parameterized nominal model and )(qG∆  stands for possible 
unmodeled dynamics and is also bounded by suitable norm in the space of transfer 
functions. More details on driving bound of )(qG∆  can be found in [13]. For our 
identification problem we choose ∞-norm. Using this, the effect of the frequency 
response amplitude of unmodeled dynamics can be considered effectively.  
Regarding (8), the input-output relationship (6) can be presented as: 
 
 )()()](),([)( kvkuqGqGky mm +∆+= θ    (9) 
    )()()()(),()( kvkuqGkuqGky mmm +∆=− θ  (10) 
 
As it has been addressed earlier, we choose L∞ and H∞ norms for noise and 
unmodeled dynamics respectively, so: 
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where 

∞
∆ )(qG and 

∞
)(kv are nonparametric and parametric perturbation bounds 

respectively and come from a priori information on system to be identified. Let: 
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Thus (13) can be expressed as: 
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Another way in determination of perturbation bound for set membership problem is to 
use a constant upper bound instead of variable bound. In order to do this, we can 
choose the maximum value of the variable perturbation bound over all N samples and 
consider it in (14) for all data samples. Although considering constant upper bound on 
system’s perturbations increases the conservativeness of identification algorithm but 
it reduces the computational complexity of the algorithm.  
Know we have to determine structure of ),( θqG  in order to complete the set 
membership inequality in (14).different model structures are available for nominal 
model [17]. Among them, output error (OE) structure is a popular model structure. To 
avoid high computational complexity due to nonlinear optimization in the process of 
parameter estimation and to obtain linear in model structure, we use the linear 
combination of orthonormal basis functions for OE model structure. This choice has 
an another advantage in the way that much more a priori information can be imported 
to the identification algorithm by proper choice of basis functions. In other words by 
selecting basis functions whose dynamics are close to the dynamics of the real 
system, it will be conceivable to estimate the nominal model by minimum number of 
parameters [18, 19]. Because of resonant nature of our system, we use so-called 
“Kautz” or two-parameter basis functions [20]: 
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where n is the order of nominal model and )(qiψ  is Kautz basis function. Now by 
(14) and (15): 
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or equivalently: 
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where ),( kqmx  is the regression(information) vector and computed as: 
 
                      )]()(...)()()()([),( 21 kuqkuqkuqkq mnmmm ψψψ=x                          (19) 
                                                                                          
And T

n ]...[ 21 θθθθ =  is the vector of parameters. For each time stamp (k=1, 2,…, N), 
(18) produces a so-called strip in the space of parameters. By intersecting these strips, 
“Feasible Parameter Set” (FPS) will be obtained as follow:  
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In fact, Θ  is the set of all parameters compatible with input-output data, a priori 
information on system and the uncertainty bounds. For the case that inequalities are 
linear in parameters, as (20), the FPS is a convex polytope in the space of nominal 
model’s parameters. The aim of set membership robust identification problem is to 
compute the FPS and determine an optimal point in FPS (in some sense) as the 
nominal model’s parameters. Exact computation of FPS and nominal model’s 
parameters is a laborious task and requires high amount of numerical computations 
and is not conceivable in practical situations [21, 22]. An alternative is to outbound 
the FPS by simple geometrical shapes like “Ellipsoid” and “Parallelotope” and 
consider their center as the parameters of nominal model [7, 8, 9, 13]. 

SIMULATION RESULTS 

This section presents the identification results for a lightly damped simply-supported 
flexible beam (fig. 2).  The simply-support flexible beam which is considered in this 
work is assumed to be out of steal whose exact specifications are given in table1. 
The identification experiment has been simulated using a “Finite Element” model of 
the beam. The input signal applied to this model is force and the output collected for 
identification purpose is displacement corrupted by a normally distributed Gaussian 
noise with SNR of 1% (fig. 3). The input signal is the combination of 180 sinusoidal  
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Table 1. The properties of the beam 

 
Figure 2 – The beam with location of sensor and 

actuator 
 

 

 
Figure 3 – Input and output data            Figure 4 – FRF of the beam under study 

 
with proper frequencies that have been picked according to the priori information of 
system which is in this case the FRF of the beam (fig. 4).   
Distribution of these frequencies is a key point in the experiment design. Here, the 
first two modes are considered as the in-bandwidth modes which are aimed to be 
modelled and controlled and the last two modes are assumed as the uncertainty of the 
identified model. Because of lightly damped nature of the model and its considered 
uncertainties, having a good identification of in-bandwidth modes as well as 
including high amplitude modes uncertainties in the identified model is not a straight 
forward task.  
For the identification of the first two modes, two continuous-time kautz basis 
functions are selected. The parameters of these bases are tuned based on the FRF of 
the beam. Fig. 5 shows the point estimation of the FRF of the beam used in NSSE 
algorithm. The estimated model and its uncertainty cloud using random walk process 
and with 99.99% confidence level are plotted in fig. 6. The same results for integrated 
random walk are shown in fig. 7. The second method used for robust identification of 
this lightly damped model is SM approach using non-stochastic but bounded 
assumptions on the amplitude of the noise and uncertainty of the model. The 
estimated model and its corresponding estimated uncertainty band are computed 
using ellipsoid set-membership method. In this case, two discreet-time kautz models 
are used to identify the first two modes of the beam. As it can be seen from fig. 6 and 
fig. 8, NSSE method with random walk process and SM methods deliver high 
amplitude uncertainty bands at the in-bandwidth modes while the band for 
uncertainty modes is tight. This identified model will reduce the performance of the 

Length 500 mm 
Width 20 mm 
Thickness 1 mm 
 Modulus of Young 2.07e+11 
Density 7800 Kg/m3 
Damping 5e-3 

Sensor 

Actuator 
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Figure 6 –Estimated model (dashed line) 
and its uncertainty band for random walk 

process (green cloud) 

controller for the first two modes. Otherwise, the identified model using NSSE with 
integrated random walk process shows tight fitting at the first two modes, while the 
amplitude of the third mode is not covered totally by the uncertainty band. In 
comparison with the previous identified model this model will result in better 
performance for the damping of the first two modes, while the stability of the 
controller is somewhat questionable because of uncertainties. However, since there is 
always a trade-off between stability and robustness of the controllers, the identified 
model in fig. 7 shows good compromise between these two goals. 
 
 

  
  

 

 
 

 
 

 

 

CONCLUSIONS 

Because of reducing the spill-over effect and increase the stability and performance of 
the robust controller used in active vibration control applications, robust identification 
of lightly damped flexible structures is an evident necessity. So here, the model of a 

Figure 5 –Point estimation of the         
FRF of the  beam 

Figure 7 –Estimated model (dashed line) 
and its uncertainty band for integrated 

random walk process (green cloud) 

Figure 8 –Estimated model (dashed line) 
and its uncertainty band using ellipsoid SM 

method (green cloud) 
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lightly damped flexible beam with high amplitude modes as uncertainty was 
identified using two different robust identification approaches. The first one was 
NSSE with both random walk and integrated random walk processes and stochastic 
assumptions on uncertainties. The second approach was set-membership with 
ellipsoid out-bounding of uncertainties and deterministic assumptions. Identification 
results show that in comparison with other proposed methods, the model obtained by 
NSSE with integrated random walk process exhibits a better compromise between 
performance and robust stability of the identified model and so it is a good candidate 
for use in robust active vibration control algorithms. 
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