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Abstract

The analysis of experimentally measured frequencies as a cnterion for crack detection has
been extensively used in the last decades given its simplicity, However the inverse problem of
the crack parameters (location and depth) determination is not straightforward. An efficient
numerical technique is necessary (o obtain significant results, Two approaches are herein pre-
sented: The solution of the inverse problem with a power series technique (PST) and the use
of artificial neural networks (ANNs). The free vibration problem of a Bernoulli-Euler beam
with an intermediate spring is stated and then solved with the PST. The first three Nexural
frequencies are measured and input in the algorithm. At this siage a numerical experiment
on a 21> beam is employed. The crack depth 1s derived from a Mechanics of Fractures rela-
tionship. The ANNs technigque is a different approach since it needs a training set of data. A
single hidden layer back-propagation neural network 15 trained with data found wath 2D fi-
nite element models with more than four hundred scenarios, These data are also analyzed and
some curves are depicted to show the variables influence. The first methodology 1s very sim-
ple and straightforward though no optimization is included. It yields negligible errors in the
location and very small ones in the depth values. When using one network for the detection
of the two parameters the ANNs behave adequately. However betier resulis are found when
an ANN is used for cach parameter. Finally a combination of the two techniques is proposed:
The location found with the first technique and the depth with the second one.
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INTRODUCTION

It 15 well known that a structural element shows changes in its behaviour due 1o the presence of
a crack. The estimation of the crack parameters (location and depih) using the changes in the
measured frequencies of a cracked member has been an extended enterion in the last years.
One of the reasons is that frequencies are, among other dynamic parameters, easily obtained
from measurements. So their experimental determuination for a given cracked element is rather
direct. However the inverse problem of crack parameters determination for a given set of
frequencies, in a damaged element, is not as simple. So in order 1o obtain meaningful resulis
an acceptable model and an efficient numerical technique have to be adopted.

Several researchers have tackled the problem with diverse techniques. Many works are
available on crack detection in beams [2,5,6-8,12].

In the present work two approaches are explored. One 1s the solution of the inverse
problem with a power series technique (PST) and the other is the use of artificial neural
networks (ANNs).

The power series algorithm is a systematization of this well-known technique which re-
sults in an efficient numerical method appropriate for this inverse problem. The power series
technique are a useful means to have an efficient numerical tool. The authors have solved sev-
eral ordinary nonlinear problems using a similar approach [4]. Also boundary value problems
were approached with power series [3]. Two structural elements were examined with P5T, a
BE beam and a spinning beam. In both cases the modeling of the crack is done by the intro-
duction of springs of constant stiffness tor each (crack depth)(height of the section) ratio. The
analytic model of the beam with springs is stated and the differential problem is then solved
by an algorithm based on power series. Since the aim is the detection of the damage up to level
3 (its existance, depth and location), an inverse problem should be tackled. The power series
algorithm is used and the natural frequencies measured in the damaged beam are input in it.
The location and the value of the spring constant are obtained as a result, Some relationship
from the Mechancis of Fracture theory [10] allows finding the related crack depth.

The second applicabon refered to the erack detection of a damaged spinning beam
(“rotor”) was also performed though not presented here duve to brevity, Similarly to the
Bernoulli-Euler beam the inverse problem solution leads to the determination of the crack
parameters and the results may be found in [11]. The methodology is shown with an
illustrations: a cantilever beam with a vertical crack, A virtual experiment is performed with
a finite element model of a damaged BE beam. A two-dimensional elasticity element is
employed and the crack is simmulated as a notch, Finally the ANNs techmigque is explored.
The ANNs techmique is a different approach. It does not involve governing equations but it
needs a traiming set of data. A single hidden layer back-propagation neural network is trained
with data found with 2D finite element models with more than four hundred scenarios. These
data are also analyzed and some curves are depicted to show the variables influence. Some
preliminary results are commented. The obtained results are encouraging. At present other
configurations of ANMNs are being siudied.
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Bernoulli beam-spring vibrational problem

Governing equations

A cantlever cracked BE beam is considered. The crack influence is here simulaied as a change
in the fexibility at the crack location. A spring of stiffness constant £7 is then introduced. The
beam has mass density o and Young's modulus F. For the sake of generality the beam is sup-
posed to have two spans L, and Lo of different cross sections I and 5 and second moments
of inertia J; and Jo, respectively. The governing equations of the natural vibrations of the
beam-spring systems, afier non-dimensionalization, along with the boundary and continuity
conditions are:
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The following parameters have been introduced in order to obtain the nondimensionalized
SOVEITHNE CQualions: J.i'- A J.il < XN ==X Ta, 0= <=10<
wo <102 = pFl LB Q2 = pFow? L3/ EJs &k = k*Ly/EJ; and where vy (2) and
vol{aa) are the elastica of each beam segment. The prime(s) in Eq. (1-2) denote derivative(s)

with respect to 2y or xe correspondingly,

Direct and inverse problem solution via a power series algorithm,

[n the direct problem the spring constant and its location are input data and the natural frequen-
cies the output. The power series is a very well-known technique and also strai ghtforward. Tis
systematization vields an efficient method which is vseful to solve the derived inverse prob-
lem. The authors have made use of this approach to solve strongly nonlinear problems [4].
Since the direct problem is governed by linear equations, the algebra is even simpler. The
unknowns are the functions v () ) and v2{22) which are expanded as follows:

] N
(1) Z ."1,':1'1: vafma) Z H,-::';: N — ooitheoretically) (3)

After introducing this expansions in Eqs. (1-2) the next relationships derive

By » A —B. Y enidia +k Y pridi; 25 B2 S pmidis

5 o A , B
6—Bs Y esidirs;  Aipa =B Bia =9 (4)
a ¥4i i

where . = (k) / k! with &, ©integer number. Alsoov = Ly /Lo, 3 = L1 /(L) +Ls). 4
H..f-g;"{ FL0 ). These are necessary equations to construct the solution algorithm. The possible
input data are the spring constant &, the spring location [ and the natural frequency parameters
s, Given two of them, the third may be obtained as an eigenvalue.
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CASE 1

Figure 1: Curves b vs. 3 commesponding Lo the first three (requencies. a = Lo,

In order to solve the inverse problem a measurement of the first three natural requen-
cies of the damaged beam is carried out. Each of this values is introduced as input in the
power series algorithm. For each frequency a curve [ vs. £ is obtained. The detected spring
location and constant are given by the intersection of the three curves. The obtained value of
3 is proportional to [, and the value of & is related to the crack depth by some relationship
from Fracture Mechamics [1(}],

MNumerical results with PST: cracked BE.

In order to validate the proposed algorithm, a computational simulation of the cracked BE
beam was carried out using a 2D finite element model. The crack was introduced as a notch.
The standard package ALGOR [1] was employed for the analysis. The data for the damaged
beam is the following: length L 100 em, rectangular cross-section of height f Hoom and
width b = 1 em, Young's Modulus ' = 2.1 x 1011 Nfwm? and Poisson’s ratio » — (1.3, The
frequency parameter is £ = wlL?\/pA/E.J. In order for the computational modeling of the
structure and the parameters to be homogenized the zero sefting correction is applied (see for
instance Nandwana v Maiti [8]). Such correction 1s done on each value of frequency.

A cantilever beam is analyzed with three different values of the crack depih a,
CASE 1 with o 1 em, CASE 2 with a 2 em, CASE 3 with 3 cm. In all the
cases the 2D FEM was built for a cantilever beam with a notch 0.2 cm wide, located
at 3 = ILy/L 0.4. The first three natural frequencies are input in the power series
algorithm, after the zero setting correction. Three curves & wvs. [ for each natural fre-
quency are obtained. Figure 1 shows the three curves obtained for CASE 1. Curves Tor
CASES 2 and 3 are similar with different vertical scales. The intersection poini gives
the detected values of the parameters & and k. The value ol the crack depth o may be
estimated from the relationship & Ebh? /727 f(r)|(Ostachowics v Krawczuk [10]),
f(r) = 0.6384r% — 1.0350° + 3.7201r* — 5.1773r° 4 7.553r°% — 7.3324¢7 4 2.4909r°
(r a/h) ). Results and estimations for CASES 1, 2 and 3 are depicted in Table 1. In all
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Table 1: Crack parameter estimates 3 and a. Relative percent error is shown between paren-
theses,

CASE | 0, 0 | Q3 [ k | Estimated values
3 a
1:02x1 | 34905 | 21.7876 | 61.2885 | 23.63 | 0.4 (0%) | 0.906(—9.4%)
2:02x2 | 3.3980 | 209411 | 599480 | 487 | 0402(0.5%) | 1.901{—4.9%)

J:02x3 | 31526 | 19.1435 | 57.2844 | 1.4 0.4(0%) 3.111(3.7%)

cases the computational experiment of the cracked beam was performed with & = 0.4 and
a notch (1.2 cm wide. The natural frequencies were obtained from this computational model
(21D FEM beam).

ARTIFICIAL NEURAL NETWORKS APPROACH

The Artificial Neural network technique is a different approach [9]. It does not involve neither
governing equations not an inverse problem but it needs a training set of data. A single hidden
layer hack-propagation neural network was trained with data found with 21 finite element
models with more than four hundred scenarios. As an illustration of the data, Figure 3 shows
the first four natural frequencies of a cantilever beam with a crack. The surfaces represent the
variation of the value of the respective frequencies with the crack location and depth. A single
hidden layer back-propagation neural network was trained with data found with 2D finite
element models with more than four hundred scenarios. From the complete set a percentage
of the data was separated randomly for the validation. Several variables were modified such
as the number of newrons in the hidden layer, the leaming rate, the number of samples Tor
the validation. Figure 7?7 shows an example of a typical output of the algonthm of traiming
and validation after 50000 epochs, with the first three natural frequencies as input and with
three neurons in the hidden layer. It may be seen that the training and evaluation error are
similar with no overfitting. It was also observed that input of the four frequency in the training
improved the performance, However the handling of two output variables forces the ANN 1o
accomplish an higher average error level, To overcome this situation the authors propose the
finding of the crack location with the first technique PST and the crack depth wiath the ANNs.
The authors have already performed physical experiments on a cracked cantilever beam, with
length L. = 40, i), 60 cm, crack location at 20), 30 cm far from the free end and crack depth
of 1, 1.2, 1.48. The corresponding crack width were 1.3, 1.4, 1.5 mm. As an example Table 2
shows one of the experiments results. Case 1: nondamaged beam. I = 40cm, square section
of 2.5 cm side, steel. Case 2: (crack location, crack depth, crack widih) (20, 1, 1.3), Case 3:
(30,1.48,1.5). Case 4: (20,1.2,1.4). The comparison of these results and the ANN output will
be presented in the Congress.
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Figure 2: Influence of crack parameters on the first four natural frequencies of a cantilever

cracked beam

Table 2: Physical experiment on cracked beam. L
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erech lncwian

crack dapi®.

40 em. Prequencies in He,

Clase | Lst.freg. (m) | 2nd. freq. | 3rd. freg. | 4th. freq.
1 Exp 110 65 1845 3437
12D 113 HEY 1866 3315
2 Exp 105 365 1830 3225
220 110 6w 1855 3390
3 Exp 83.5 610 16456 3325
32D 80 Hi6hd 1498 3461
4 Exp 105 380 1823 3275
42D 107 66 1848 3388
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Figure 3: Typical ANN output. Training and validation. 50 neurons in one single hidden layer.
Backpropagation algorithm in Matlab environment.

FINAL COMMENTS

A crack detection method for beam-type elements was presented. The detection criterion em-
ployed is that of the analysis of changes in the frequencies. The use of a power series algorithm
provides of a straightforward and efficient numerical techmque to solve the inverse problem.
The crack is modeled by introducing springs to represent the stiffness diminution.

The results are excellent in the location value an with acceptable errors in the depth.
It was observed that the width of the crack {in the axis direction) affects the accuracy of the
depth resulting value. Also, as was expected, the angular velocity value does not affect the
crack detection.

The ANN technigue is in development and preliminary conclusions are herein pre-
sented. Also frequency values have been found through physical experiments and the com-
parison between these and the ANN output will be presented during the Congress.
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