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Abstract
We present a method to study sound generation processes in low Mach Number flows. In-
stead of the full flow field obtained from e.g a DNS, we consider a base flow together with
a time-dependent perturbation ,where the perturbation satisfy the Navier-Stokes equations
linearized around the base-flow. In a reduced model the perturbation is approximated by a
linear combination of the eigenmodes of a corresponding eigenvalue problem. The behavior
in time is determined by the corresponding eigenvalues. Curle’s equation is used to calculate
the acoustic field. By studying the source terms in Curle’s equation, it is possible to identify
mechanisms for sources of sound. This makes it possible to study how the different sources
of sound depend on different structures of the flow field. We apply the methodology on a two-
dimensional flow over a cavity with smoothed corners. Results of acoustic pressure in the far
field and source strengths for different superpositions of eigenmodes are presented.

INTRODUCTION

One common method used to obtain source data to analyze for acoustical purposes is to solve
the full Navier-Stokes equations, with the level of modeling of the viscous terms in the Navier-
Stokes equations can range from RANS, LES/DES to DNS.

In DNS, the non-linear Navier-Stokes equations are solved numerically, yielding time-
dependent data of e.g. the pressure and velocity field. This means that it can be difficult to
clearly identify the sound generating structures in the solution. Also, performing DNS are
computationally expensive, and the amount of raw data that is produced is large enough such
that storage becomes an issue. Because of these large amounts of data, the dominating part of
the computational time in solving Curle’s equation will be spent on memory handling.

In this paper another method to obtain data for use in the source terms in Curle’s equa-
tion is evaluated. It is also applied to a problem in the form of a low Mach number flow over
an open cavity.
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The theory of reduced models obtained from global modes has been developed espe-
cially for flow control purposes, see for example [7]. Although the analysis has been known
for a long time, it is only in recent years that the calculations has been possible to carry out in
two space dimensions, due to increasing computational performance. Here, however, we will
use a reduced model in order to get a further understanding of sound generation mechanisms.

A REDUCED MODEL OF THE FLOW FIELD

The basic idea is to project the dynamics of the flow field on a subspace spanned by the eigen-
modes of the linearized Navier-Stokes equations. The flow data used in an acoustic analogy
can then in principle be reduced to only include the eigenmodes that are thought to be of
interest for the sound generation mechanisms. The derivations below will be carried out for a
two-dimensional problem, but are easily generalized to three space dimensions.

In this paper the non-dimensional incompressible Navier-Stokes equation
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is considered, since the method is to be applied to low Mach number flows. Here
u = (u(x, y), v(x, y)) is the velocity of the flow field, p is the hydrodynamic pres-
sure and Re is the Reynolds number. When Eq. (1) is linearized around a base flow
U(x, y) = (U(x, y), V (x, y)), P (x, y), the equations for a small perturbation (u ′, v′, p′) is
obtained as, see [5]:
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Assuming harmonic time dependence and that the perturbations are separated into the
eigenmode solution and harmonic time dependence we let

q = q̂(x, y)e−iωt (3)

where q = (u′, v′, p′)T . The ansatz (3) implies that the space and time dependence is sepa-
rated. Here q̂ and ω are complex-valued quantities.

With (3) in (2), we obtain, for two-dimensional flows, the following eigenvalue problem

Aq̂ = −iωq̂ (4)
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For a discretized problem, the solution of the eigenvalue problem Eq. (4) is a finite
set of eigenmodes q̂n = (ûn, v̂n, p̂n )T with corresponding eigenvalues ωn. The number of
elements M in these sets will be two times as many as the number of grid points that has
been used to discretize the domain for a two-dimensional problem, and three times as many
for a three-dimensional problem. The matrix (5) is typically too large for the system (4) to be
solved by standard methods. Krylov subspace methods provide the possibility to solve these
large eigenvalue problems by computing parts of the spectrum. Here we have used the Arnoldi
method, [2], [4]. In a reduced model, only a subset N � M of the eigenmodes is used.

The flow field perturbation can now be written as

q(x, y, t) =
N∑

n=1

cn q̂n(x, y) e−iωnt (6)

where cn are constants determined by the initial condition. The benefit of writing the flow
field on this form is that it is now possible to analyze the eigenmodes separately, or to analyze
how different combinations of eigenmodes interact. From a computational point of view this
form is also beneficial since only a set of eigenmodes are required to be saved as opposite to
the whole flow field for every time step of the DNS.

We would like to stress that the reduced model is only valid when linearization is valid.

CURLE’S EQUATION

In order to calculate the sound that is generated by the flow field, we consider a non-
dimensionalized formulation of Curle’s equation, [1], with the scalings
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where L is a length scale of the source domain. Since the flow is assumed to be of low Mach
number, the volume sources and the shear stress sources are neglected, [5]. If the observation
location is in the acoustical far-field, Curle’s equation is reduced to (omitting the stars):
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where p′(x, t) is the sound pressure at the observer location x, S is the solid boundary of the
source region, ni is the outward-facing normal of the boundary, li are the direction cosines
pointing from the source region to the observer, r is the distance from the source region to
the observer, M∞ is the free stream Mach number, p is the hydrodynamic pressure at the
boundary of the source domain and the brackets denote that the pressure is evaluated at the
retarded time.

We rewrite the hydrodynamic pressure using the pressure component of the eigenmodes
in Eq. (6):

p(x, y, t) = P (x, y) +

N∑

n=1

cnp̂n(x, y)e−iωnt. (9)

and introduce (9) into (8). The angular frequency ωn is on non-dimensional form from Eq.
(4), but the retarded time t − r/a∞ needs to be non-dimensionalized. With the scalings
above, the time-dependence can be formulated as ωnτ where τ = t − M∞r. Summation
over i = 1, 2, j = 1, 2 yields
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The temporal derivative is equivalent to a multiplication with −iωn due to the ansatz of the
time-dependence of the eigenmodes, and the time independence of the base pressure, hence
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which can be reformulated as
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for t > M∞rmax where rmax is the distance from the observer to the point in the source
region that is furthest away from the observer location.

Note that φn is independent of time. This means that the integral only needs to be
evaluated once for every n and every observation location. We have

p′(x, t) =

N∑

n=1

cnφn e−iωnt, t > M∞rmax. (10)
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Writing (8) in the form of (10) is beneficial, since it makes it an extremely fast task to
perform an analysis of a chosen initial condition. Also, since the equation is written as a sum
of constant coefficients and complex exponential functions, the spectrum of the sound is in
fact determined at the same time as the sound itself.

In this paper we only consider the far-field sound generated by the pressure fluctuations
at the surface, but the same methodology applies to all the linear terms in the full Curle’s
equation. The non-linear terms have to considered differently.

OPEN CAVITY

In contrast to many aeroacoustic studies on open cavities, where cavities of short length to
depth ratio and sharp corners has been considered,see e.g. [8], [3], the cavity geometry used
here have a very long length to depth ratio of about L/D ≈ 20, with smooth corners. A sketch
of the geometry of the cavity is given in Figure 1.

x
y

Figure 1: Overview of the geometry of the cavity

Calculations were performed using the non-dimensional form of the incompressible
Navier-Stokes equations, at a Reynolds number of Reδ∗ = U∞δ∗

0
/ν = 325 based on the

boundary layer thickness at the inflow of the domain, δ∗
0

where

δ∗
0

=

∫
∞

0

(

1 −
U(y)

U(∞)

)

dy.

Here U∞ is the free stream velocity and ν is the kinematic viscosity. The boundary layer
thickness at the inflow is also the length scale used in the scalings in (7).

A set of eigenvalues with corresponding eigenmodes were calculated, and a subset of
the computed eigenvalues is shown in Figure 2. Since the eigenvalue problem is formulated
using the non-dimensional Navier-Stokes equation, the eigenvalues and the eigenmodes are
given on non-dimensional form. To relate the non-dimensional eigenvalues in Figure 2 to the
corresponding dimensional eigenvalues, the scaling ω = U∞ω∗/δ∗ can be used. Here ω and
ω∗ are the dimensional and the non-dimensional eigenvalues, respectively. As can be seen
from (10), ω will also be the angular frequency of the generated sound.

Note that the damping of two of the eigenvalues actually is positive, i.e. they will grow
in time. Hence, the corresponding eigenmodes will cause exponential growth and the dynam-
ics is after a certain time not described by the linearized equations.
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Figure 2: Spectrum of the non-dimensional eigenvalue problem.

In Figure 3 the real part of the velocity in the x-direction is shown for the most unstable
eigenmode, that is, the eigenmode with the most positive imaginary part. The corresponding
eigenvalue is ω = 0.1346 + 0.0014i. If any or both of the unstable eigenmodes are triggered,
they will grow exponentially and will eventually dominate the sound field.

Figure 3: Overview of the real part of the u-component of the most unstable eigenmode.

A Vortex In The Cavity

We apply the eigenmode decomposition technique on a M∞ = 0.1 flow where the initial
condition describes a vortex with the velocity field u(r, θ) = (1 − e−r2

)/(50r) eθ centered
at x = 120, y = 2. This can be seen as a simple model of a perturbation propagation in the
shear layer. Figure 4 shows the absolute value of the velocity of the initial perturbation of the
initial condition.

Figure 4: Absolute value of the velocity of the initial perturbation.

In Figure 5 the generated sound generated measured at an observer located at x =

50, y = 100 is shown. The observer location was in the direction where most sound is
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assumed to be radiated. In the left figure, the sound from the individual eigenmodes are plotted
separately. As can be seen, at around t = 400 the sound field is dominated by the two unstable
eigenmodes, which together creates a beating effect.
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Figure 5: Sound generated by the individual eigenmodes (left), and the total sound (right).

In Figure 6 the surface pressure fluctuation is plotted for different times. The cavity is
located in 50 < x < 100. It is clearly seen that the sound generating mechanisms are at the
trailing edge of the cavity.

Figure 6: Surface pressure fluctuations for different times

The calculated directivity of the generated sound is governed by two effects. Firstly,
the large pressure fluctuations at the trailing edge of the cavity generates sound that is close to
omnidirectional, but with a slightly stronger radiation in the downstream direction. Secondly,
the regions above and below the trailing edge seems to form a dipole in the stream-wise
direction which yields a large dip vertically above the trailing edge.

Optimal Growth

As a second test case we used initial data, chosen such that an optimal growth is obtained,
see [6]. For the cavity flow considered in this study, the optimal growth initial data is mainly
governed by perturbations located in the upstream region of the shear layer. Calculations
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showed that the generated sound is about three orders of magnitude larger than from the
initial condition describing a vortex in the cavity, even though the perturbations are of the
same order at t = 0. This clearly shows the strong dependence on the initial value of the
sound generation.

SUMMARY

An alternative approach to using DNS as data for Curle’s equation has been investigated. The
dynamics of the flow field was decomposed into its global modes and a reduced model con-
sisting of only a small part of the global modes have been used as source data. The technique
is fairly new in the field of fluid dynamics and its usefulness to aeroacoustics therefore in-
teresting to examine. The computational effort of solving Curle’s equation is also drastically
decreased using this approach. Although the method requires the dynamics to be within the
linear regime, its strength is its ability to identify the sound generating structures or “acoustic
hotspots” .
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