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Abstract 
The finite element method (FEM) is the most commonly used prediction method for steady-

state acoustic analysis. However, due to the application of approximating shape functions, the 

FEM is restricted to problems in the low-frequency range. A recently developed wave based 

technique (WBT) has proven to be a computationally more efficient prediction method, as 

compared to the FEM. As a result, the WBT is able to tackle problems at higher frequencies. 

However, in order to fully benefit from the WBT’s computational efficiency, the considered 

problem should have a moderate geometrical complexity. To overcome the limitations of 

both prediction methods, hybrid methods have been developed which couple the FEM and 

the WBT. These hybrid approaches combine the flexibility of the FEM for modelling 

problems of arbitrary geometry with the computational efficiency of WBT. This paper 

focuses on a direct hybrid coupling approach between the FEM and the WBT. The 

performance of the hybrid approach is compared with that of the FEM by means of a two-

dimensional validation example.  

INTRODUCTION 

The finite element method (FEM) is the most commonly used deterministic 

prediction method for the analysis of steady-state acoustic problems [1]. Due to a 
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discretization of the acoustic problem domain into (small) elements, the FEM can 

tackle problems of arbitrary geometrical complexity. However, the FEM is restricted 

to problems in the low-frequency range due to the increasing model size and 

computational efforts with increasing frequency in order to keep the FE 

approximation errors within reasonable bounds.  

The recently developed wave based technique (WBT) has proven to be a 

computationally more efficient deterministic prediction method, as compared to the 

FEM [2]. The WBT is based on an indirect Trefftz approach, in that the 

approximation solution satisfies the governing domain equations and violates only the 

boundary conditions. The resulting numerical models are much smaller than 

corresponding FE models. Combined with a superior convergence rate, the small 

model size makes the WBT applicable for analyses at higher frequencies as compared 

to the low-frequency application range of the FEM. However, in order to fully exploit 

the WBT’s computational efficiency, the problem at hand should have a moderate 

geometrical complexity. 

To overcome this drawback of the WBT, hybrid couplings between the FEM and the 

WBT have been developed. These WBT-HFEMs combine the flexibility of the FEM 

for modelling problems of arbitrary geometry with the computational efficiency of 

the WBT. Whereas an indirect hybrid coupling strategy using an auxiliary frame 

between the FE and WBT subdomains has been described in [3, 4], this paper focuses 

on a direct hybrid coupling approach between the FEM and the WBT. A two-

dimensional validation example compares the performance of the WBT-HFEMs with 

the FEM. 

PROBLEM DEFINITON 

Consider a two-dimensional (2D) interior steady-state acoustic problem involving a 

2D acoustic cavity Ω  surrounded by a boundary Γ . The homogeneous Helmholtz 

equation  

 

 ( ) ( )2 0,    k p∆ + = ∀ ∈Ωr r  (1) 

 

governs the steady-state pressure ( ) ( ),p p x y=r  in Ω , with 2 2 2 2x y∆ = ∂ ∂ + ∂ ∂  the 

Laplace operator, k cω=  the acoustic wave number, ω  the circular frequency, ρ  

the ambient fluid density and 1j = −  the unit imaginary number. The boundary Γ  

consists of three parts ( )p v Z
Γ = Γ Γ ΓU U , where the following boundary conditions 

are imposed 

 

   at  
p

p p= Γ ,   at  n v

j p
v

nρω

∂
= Γ

∂
 and   at  Z

j p p

n Zρω

∂
= Γ

∂
 (2) 
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p , nv  and Z  represent the prescribed pressure, the prescribed normal velocity and 

the prescribed impedance, respectively. 

HYBRID WBT – FEM THEORY 

Review of the finite element method 

The FEM discretizes the acoustic cavity Ω  into a large number of non-overlapping 

elements. Each element eΩ  is surrounded by the element boundary eΓ . This 

boundary is composed of four parts ( )e e e e e

p v Z i
Γ = Γ Γ Γ ΓU U U , which are the 

intersections of eΓ  with the problem boundaries ( ,e e

p pΓ = Γ ΓI ,e e

v vΓ = Γ ΓI  

e e

Z ZΓ = Γ ΓI ) and the common interface e

iΓ  between two adjacent elements. 

A linear combination of simple (polynomial) shape functions Na approximates the 

exact solution p within each element eΩ as follows 

 

 ( ) ( ) ( ) ( ) e

1

ˆ ,    
an

e e

a a

a

p p N p
=

≈ = = ∀ ∈Ω∑r r r N r p r  (3) 

 

The contribution factors e

ap , stored in the element vector ep , form the unknown 

degrees of freedom (DOF’s). Approximation p̂  satisfies a priori the essential 

boundary conditions along e

pΓ  and the inter-element pressure continuity between two 

adjacent elements along e

iΓ . Errors on the Helmholtz equation (1) and the mixed and 

natural boundary conditions (2) are forced to zero by a weighted residual formulation. 

Application of partial integration and the divergence theorem, transforms the 

weighted residual formulation into its weak form.  

 

( ) ( )( )2 ˆ
ˆ ˆ 0

e e e e
v Z i

T e

n i

p
W p k Wp d j Wv d j W d j Wv d

Z
ρω ρω ρω

Ω Γ Γ Γ

− ∇ ∇ + Ω − Γ − Γ − Γ =∫ ∫ ∫ ∫  (4) 

 

W  represents a weighting function and e

i
v  the unknown interface velocity. Following 

a Galerkin approach, the weighting functions are chosen to be a linear combination of 

the same basis functions Na as used for the pressure approximation (3). 

 

In an assembly of all element models into one global FE model the terms resulting 

from inter-element velocity continuity on e

iΓ  cancel out each other. Substitution of 

the approximation expansion (3) and the weighting function expansion into the weak 

form of the weighted residual formulation (4) yields the following FE model  
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 ( )2

n
j jω ω ω− + + = −M C K p v  (5) 

with                    
2

1
d

c
Ω

= Ω∫
T

M N N                    
1

Z

d
Z

ρ
Γ

= Γ∫
T

C N N  

                           ( ) ( )d
Ω

= ∇ ∇ Ω∫
T

K N N    and   

v

T

n nv dρ
Γ

= Γ∫v N . 

Review of the wave based technique 

In the WBT the problem domain Ω  is partitioned into a small number of (large) 

convex subdomains. This technique expresses the pressure field in each subdomain as 

a linear combination of Trefftz basis functions 
a

Φ , which satisfy the homogeneous 

Helmholtz equation within the subdomain, but which may violate the boundary 

conditions [2]. 

 

  ( ) ( ) ( ) ( )
1

ˆ ,    
an

a a

a

p p q
=

≈ = Φ = ∀ ∈Ω∑r r r Φ r q r  (6) 

 

The DOF's are the unknown contribution factors 
a

q , which are stored in q . The 

Trefftz basis functions 
a

Φ  are selected from the following set of propagating and 

evanescent wave functions 

 

 
( ) ( )

( ) ( )
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 (7) 

 

where the wave number components depend on the dimensions xL  and yL  of a 

rectangular bounding box, which encloses the considered subdomain Ω . The integer 

numbers rn  and sn  are limited by the following truncation rule 

 

 x
r

kL
n T

π

 
=  
 

    and    
y

s

kL
n T

π

 
=  
 

 (8) 

 

with a user defined truncation parameter T . 

The approximation errors at the boundaries are enforced to zero in an integral sense 

applying the following weighted residual formulation  

 

( )
ˆ ˆ ˆ

ˆ 0

p v Z

n

j W j p j p p
p p d W v d W d

n n n Zρω ρω ρω
Γ Γ Γ

   ∂ ∂ ∂
− − Γ + − Γ + − Γ =   

∂ ∂ ∂   
∫ ∫ ∫  (9) 
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where W  is a weighting function. Following a Galerkin approach, W  is chosen to be 

a linear combination of the same Trefftz basis functions aΦ  (7) as used for the 

pressure approximation (6). 

 

Substitution of the pressure approximation (6) and the weighting function expansion 

in the weighted residual formulation (9) results in the following WB model 

 

 ( )p v Z p v+ + ⋅ = +A A A q b b  (10) 

with   

p

T

p

j
d

nρω
Γ

∂
= − Γ

∂∫
Φ

A Φ , 

p

T
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j
d

nρω
Γ

∂
= Γ

∂∫
Φ

A Φ , 

Z

T

Z

j
d

n Zρω
Γ

 ∂
= − Γ 

∂ 
∫

Φ Φ
A Φ  

           

p

T

p

j
pd

nρω
Γ

∂
= − Γ
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Φ

b , 

p

T

v nv d

Γ

= Γ∫b Φ . 

Hybrid Finite Element – Wave Based Technique 

In order to combine the strengths of the FEM and the WBT, a hybrid coupling 

approach is proposed. The key idea of such a hybrid FE-WB approach is to model 

large, homogeneous, geometrically simple subdomains with the WBT, while the FEM 

is employed to model the geometrically more complex regions. As a result, the 

considered hybrid models contain less DOF’s than the equivalent pure FE models. At 

the hybrid interface iΓ  between the regions modeled with the FEM and those 

modeled with the WBT, pressure continuity and normal velocity continuity 

conditions are weakly enforced. At subdomain level, the acoustic problems are well-

posed if at each subdomain boundary point one boundary condition is imposed. In 

order to comply with this requirement, pressure continuity is imposed as a boundary 

condition on the associated WBT subdomains along iΓ  and normal velocity 

continuity is imposed as a boundary condition on the associated FE subdomains along 

iΓ .  

    on WBFE
i

FE WB

ppj j

n nρω ρω

∂∂
= − Γ

∂ ∂
   and      on WB FE ip p= Γ  (11) 

 

To impose these continuity conditions in an indirect coupling approach [3,4], an 

auxiliary frame with associated frame DOF’s is introduced. In a direct coupling 

approach, no additional DOF’s are needed, and the continuity conditions are imposed 

directly on the approximation fields of the FEM and the WBT. 

Along the hybrid interface iΓ , velocity continuity is imposed. This results in an 

additional term in the weighted residual formulation (4)  

 

 
ˆ

i

WB

WB

p
W d

n
Γ

∂
− Γ

∂∫L  (12) 
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The novel weighted residual formulation leads to the following FE part of the hybrid 

model 

 ( )2 j jω ω ω− + + + = −1 1 1

1 12 2 n1M C K p Q q v  (13) 

with 

i
WB

d
n

Γ

∂
= Γ

∂∫
T

12

Φ
Q N  (14) 

 

where 12Q  represents the coupling matrix between FE and WB. 

To impose pressure continuity along the interface iΓ , the weighted residual 

formulation (9) of the WB part of the hybrid model is extended with the following 

term  

 ( )ˆ ˆ

i

WB FE

WB

j W
p p d

nρω
Γ

∂
− − Γ

∂∫L  (15) 

 

This modified weighted residual formulation results in the following WB part of the 

hybrid model 

 

 ( )2 2 2 2 2 21 1 2 2p v Z p v+ + + ⋅ + ⋅ = +A A A C q Q p b b  (16) 

with  21

i

T

WB

j
d

nρω
Γ

∂
= Γ

∂∫
Φ

Q N    and   2

i

T

WB

j
d

nρω
Γ

∂
= − Γ

∂∫
Φ

C Φ    (17) 

 

where 12Q  represents the coupling matrix between WB and FE and 2C  represents the 

WB model back-coupling matrix. The complete hybrid FE-WB model is given by  

 

 

2

12 1 1

21 2 2 2 2 2 2

n

p v Z

j jω ω ω − ⋅ + ⋅ + −   
=     

+ + +      

1 1 1
M C K Q p v

Q A A A C q b
. (18) 

 

Solution of (18) for the DOF’s yields the nodal FE pressures 1p  and the WBT wave 

function contribution factors 2q . 

NUMERICAL VALIDATION EXAMPLES 

In order to validate the novel direct hybrid method, a simple bounded 2D acoustic 

problem is considered, see figure 1. A normal velocity excitation [ ]( )1
n

v m s=  and 

normal impedance boundary conditions [ ]( )2000Z Pa s m= ⋅  are imposed. Three 

types of models are considered: (i) pure FE models with linear quadrilateral elements, 

(ii) hybrid FE-WB models, which are derived from the pure FE models by replacing a 

large number of FE with a small number of WB subdomains, coupled in a direct way, 
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or (iii) coupled in an indirect way. A very accurate FE model is used as reference 

model (34861 DOF’s, element length = 0.005m). The model has dimension of 

[ ]1.6xL m= , [ ]0.7yL m=  and is filled with air ( 31.225 kg mρ  =   , [ ]340c m s= ). 

 

x
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 x
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Figure 1 – hybrid FE-WB model (left)  and finite element model (right) 

Figure 2 plots the pressure amplitude spectrum predictions at point 2 inside the 

acoustic cavity (see Fig 1). Pressure predictions are shown for a FE model (with 

12661 DOF’s), an indirect coupled hybrid FE-WB (with 5246 FE DOF’s, 120 frame 

DOF’s and 74 WB DOF’s at 1000Hz) model and a direct hybrid FE-WB model (with 

5246 FE DOF’s and 74 WB DOF’s at 1000Hz) in a frequency range from 1Hz to 

1000Hz with a resolution of 1Hz. The results show no significant differences between 

the hybrid coupling methods and FEM.  
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Figure 2 – pressure spectrum prediction for 2D acoustic problem 

Figure 3 shows results from a convergence analysis at 1560Hz, plotting the average 

relative pressure prediction accuracy using 391 evenly distributed response points in 

function of the number of DOF’s and the involved CPU time. The refinement of the 

hybrid FE-WB models consists of a mesh refinement of the FE submodel only. The 

WB submodels have a fixed size of 108 wave functions. The various model sizes are 

listed in table 1. For the reference model the FE model with 34861 DOF’s was used 

(FE length = 0.005m).  

 
Table 1-number of DOF’s used for different models 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

FEM 391 1449 3235 5689 8831 12661 

Direct 284 738 1472 2486 3780 5354 

Indirect 304 778 1532 2566 3880 5474 
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The convergence analysis shows that convergence rates of the direct and the indirect 

hybrid methods are very similar and higher than that of the FEM.  
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Figure 3 – averaged relative pressure error 

CONCLUSIONS AND NEXT STEPS 

This paper discusses a direct hybrid coupling approach between the FEM and the 

WBT as an alternative for the indirect coupling approach discussed in [3,4]. A two-

dimensional validation example shows that the direct and indirect approach both yield 

prediction results of similar accuracy. Both approaches exhibit a similar enhanced 

convergence behavior as compared to the FEM. The direct approach, discussed in this 

paper, results in smaller numerical models, as compared to the indirect approach. As a 

result the direct method is less memory demanding than the indirect method. In a next 

phase, the hybrid FE-WBT method will be implemented and validated for three-

dimensional engineering problems. 
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