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Abstract 
A five stage “Roots and Claw” dry vacuum pump is a typical kind of quasi-steady state high 
speed rotating machine. The research using the novel Acoustic Emission measurement and 
Wavelet technique aims to develop advanced detection methods for dry vacuum pumps to 
prevent pumps’ failure. In this paper, the denoising problem of Acoustic Emission signal is 
studied by using Discrete Wavelet Transform thresholding methods. The Donoho-Johnstone 
threshold method and parameter method are studied and compared. The Birgé-Massart strategy 
outperforms other estimators in our case. The denoised Acoustic Emission signals enable 
detection of the defect and identification of the type of bearing defect. Care has to be taken on 
selecting the wavelet basis properly to reduce bias and error. The study shows that the Discrete 
Wavelet Transform-based thresholding method is suitable for bearing defect detection of 
rotating machines using Acoustic Emission signals.  

INTRODUCTION 

A five stage “Roots and Claw” dry vacuum pump is a typical kind of quasi-steady state 
high speed rotating machine. Its reliability is crucial to the semiconductor industry and 
a typical failure might cost over £100,000. The rolling element bearing catches our 
attention since the major problems in dry vacuum pumps are caused by this kind of 
failures. Rolling element bearing is the most commonly used machine part of rotating 
machines and its failure can be disastrous. Intensive research has focused on 
developing advanced bearing defect detection methods based on acoustic and vibration 
measurements. Each bearing element has a characteristic rotational frequency. When a 
particular defect happens on the bearing element, energy on that rotational frequency 
will increase. This characteristic bearing defect frequency can be calculated from the 
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known geometry information of bearing and its speed [1]. Different acoustic and 
vibration measurement methods for bearing defect detection are also reviewed in the 
same reference [1].  
Acoustic emission (AE) describes the phenomena that result in structure borne elastic 
waves being generated by rapid energy released from localised sources. AE signal is a 
high frequency signal, normally over 20 kHz but can be bounded to lower values 
depending on application. AE is becomeing more and more popular in condition 
monitoring of rotating machine for its high sensitivity. Mba [2] used Acoustic 
Emission to detect and identify bearing and gearboxes defects. Choudhury and Tandon 
[3] used Acoustic Emission for detection of defects in rolling element bearings.  
When defects appear on bearings, wide bandwidth periodic AE bursts can be observed. 
Then the task of bearing fault detection can be performed by finding out whether the 
AE bursts are periodic and whether they correspond to one of the characteristic bearing 
defect frequencies for identifying the type of bearing defect. The denoising and 
enhancement of AE signals is importance for it can reveal the occurrence of these 
bursts. The reduction of the number of signal coefficients can also greatly reduce the 
workload of post-analysis; particularly important since the sampling rate for AE 
signals is usually very high (~200 kSPS). The AE signals are highly non-stationary for 
their amplitude and frequency fluctuate. In this case, adaptive schemes are needed.  
The application of Wavelet Transform for bearing defect detection has caught attention 
recently. Wavelet techniques are more suitable for transient analysis. Peng [4] 
presented a comprehensive review on the application of wavelets in machine condition 
monitoring and fault diagnostics. Qiu [5] proposed a two-step optimization process. 
Liu [6] studied the adaptive harmonic Wavelet transform. When using Discrete 
Wavelet Transform, its computation efficiency ensures its applicability on real-time 
implementations. The thresholding scheme based on Discrete Wavelet Transform is 
more attractive for it handles noise adaptively at different levels. Discrete Wavelet 
Transform firstly decomposes signals at different levels. At each level, noise is 
estimated robustly. Then the denoising threshold is estimated by using different 
estimators. Two main families of threshold methods are: Donoho-Johnstone methods 
(Square2log, Heursure, SURE and Minimax) and parameter methods proposed by 
Birgé-Massart (Birgé-Massart strategy and penalized method). 
In this paper, these main families of thresholding methods based on Discrete Wavelet 
Transform are studied in order to investigate their nonlinear behaviour at different 
levels. The first study aims to find out the relationship of the four estimators of 
Donoho-Johnstone threshold methods. The second study is to investigate the 
parametric thresholding method proposed by Birgé and Massart. Finally, the 
periodicity of the denoised signals is studied to investigate their suitability for bearing 
defect frequency detection.  

EXPERIMENTAL METHODS 

A five stage “Roots and Claw” dry vacuum pump with empty load was used as test bed. 
A known defected bearing was mounted at its high vacuum side. The speed of pump 
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was set at 105 Hz (6300 rev min-1) and the inlet pressure was set at 0 mbar. An AE 
transducer (PAC R3α) was firmly held at the surface of the pump house to capture AE 
signals in the radial direction. The AE signals were sent to an amplifier with gain of 
1000 and then a band pass filter (10 kHz-50 kHz) before being digitized by a 16-bit NI 
Analogue to Digital Converter (ADC). The frequency response of the transducer and 
filter is chosen as to complement that of the ADXL acceleration transducer also used in 
our research. The AE signals were sampled at the rate of 200 kHz. The analysis was 
conducted off line on the platform of Matlab and LabView. 

RESULTS AND DISCUSSION 

The AE signals were separated into frames of samples for analysis. Each frame 
corresponding to 10-2 s included 2000 data points. In this section, the default option of 
DWT for all the estimators is chosen as level dependent. Signals were decomposed by 
4-levels DWT (bior3.9). The biorthogonal wavelet is used because the linear phase and 
symmetry features are important in signal detection. Wavelet coefficients from Level 1 
to 4 correspond to four frequency bands D1 (50 kHz~100 kHz), D2 (25 kHz ~50 kHz), 
D3 (12.5 kHz ~25 kHz) and D4 (6.25 kHz ~12.5 kHz). The thresholding was conducted 
at wavelet coefficients on different levels. The purpose of the first study aims to find 
out the relationship of four estimators of Donoho-Johnstone threshold methods. The 
four estimators are Square2log (also Universal), Minimax, Heursure and SURE. Figure 
1 (Left) and Figure 2 show the thresholds and noise (note: logarithmic scale) estimated 
in three typical frames. The original signal is noisy and it is not easy to separate the AE 
bursts. See Figure 1(Right) for Sample 1. The denoised signals of Sample 1 are shown 
in Figure 3. It is shown that Sqt2log outperforms the other three estimators.  

 
Figure 1 – Left: Estimated Thresholds and noise (log) for Sample1; Right: The original signal 

All the estimators are adaptive to the noise. For different AE signals, Sqt2log always 
selects the highest thresholds and SURE is the most conservative threshold estimator 
always selecting the lowest thresholds. Table 1 summarizes the observation of the 
sequence of estimated thresholds by using these four estimators.  
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Figure 2 –Estimated Thresholds and noise (log) for Sample2 and 3 

Table1 – Sequence of selected thresholds at different levels 

 Sequence of selected thresholds by using four estimators 

Level 1 Sqt2log>Minimax>heursure(=SURE)>noise 
Level 2 Sqt2log>Minimax>noise; heursure=SURE 
Level 3 Sqt2log>heursue>Minimax>noise; heursure≠ SURE 
Level 4 Sqt2log>heursue>Minimax>noise; heursure≠ SURE 
 
The sequence of Sqt2log, Minimax and noise is kept as the same at different levels in 
all the cases. The estimated thresholds to noise ratios of Sqt2log and Minimax are 
equally at different levels. For Sqt2log, signals with SNR over 1.36 were kept. For 
Minimax, signals with SNR over 0.87 were kept.  

 
Figure 3 –Denoised signal of Sample 1 

Heursure selects the same thresholds as SURE at lower levels 1 and 2 while at higher 
levels 3 and 4, it chooses higher thresholds. It keeps more coefficients than Sqt2log and 
Minimax at low levels 1 and 2. See Figure 4 for illustration of denoised coefficients of 
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Sample 1 at different levels. All the estimators tend to keep more coefficients at low 
levels 1 and 2 when SNR is high at these levels. The denoised signals (see Figure 3) are 
mainly dominated by the coefficients at levels 1 and 2, which explain why Sqt2log 
outperforms the other three estimators.  

 
Figure 4 –Denoised coefficients at different levels 

The second study is to investigate the parametric thresholding method proposed by 
Birgé and Massart, including Birgé-Massart strategy and penalized method. Figure 5 
shows the estimated thresholds and noise of Sample 1 using Birgé-Massart strategy.  

 

Figure 5 –Estimated Thresholds and noise (log) for Sample1 using Birgé-Massart strategy 

The thresholds selected by Birgé-Massart strategy are also adaptive to the noise. The 
estimated thresholds increase by the parameter Alpha. But Birgé-Massart strategy is 
very strict at low levels 1 and 2, only the signals with SNR over 3.5 remain, even 
choosing the smallest Alpha=1.2 at level 1. The estimator tends to keep more 
coefficients at high levels 3 and 4 and is more flexible than Donoho-Johnstone 
threshold methods at higher levels for one can easily control thresholds by changing 
Alpha. Denoised Signals are shown in Figure 6. Denoised coefficients of Sample 1 at 
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different levels are shown in Figure 7. The estimator tends to keep more coefficients at 
higher levels 1 and 2. Satisfactory denoising is achieved for Alpha=4.  

 
Figure 6 –Denoised signal of Sample 1 using Birgé-Massart strategy Alpha=1.2, 2, 4, 5 

 
Figure 7 –Denoised coefficients at different levels using BM strategy Alpha=1.2, 2, 4,5 

The estimated thresholds using penalized method at level 1 are showed on Figure 8 
(Left). Other thresholds estimated by Donoho-Johnstone method are also given for 
comparison. As known before, the Birgé-Massart strategy chooses thresholds higher 
than 0 at level 1, which are the highest estimated threshold. In this case, Minimax and 
Sqt2log correspond to Alpha 3 and 7.6, which are both the high penalized factors 
(Alpha 2.5 to 10 are defined to be high penalized factors). The denoising affect using 
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penalized method is not obvious in our case even when Alpha=10, see Figure 8 (Right). 
The reason is that penalized method underestimates the noise level at higher levels.  

 
Figure 8 –Left: Estimated Thresholds and noise (log) for Sample1 using Penalized method 

Alpha[1.2, 10] at level 1;      Right: Denoised signal using Penalized method Alpha=10 

In the following section, the periodicity of denoised AE signals is studied in order to 
investigate their suitability for bearing defect frequency detection.  

 
Figure 9 – Peaks of denoised signals (absolute value) using bior3.9 Wavelet 

 
Figure 10 – Peaks of denoised signals (absolute value) using bior6.8Wavelet 



Yanhui Feng, Suguna Thanagasundram, Fernando S. Schlindwein 

The peaks of the denoised signals Sample 1 (absolute value) are picked up as Figure 9 
and Figure 10. The amplitudes of peaks of Sqt2log are higher than those estimated by 
the Birgé-Massart strategy.  The periodicity of the peaks is very obvious. Table 2 gives 
the detailed positions of peaks, the average periods (unit in data points) and errors.  

Table2 – Peaks location of denoised signals 

 PeakPosition Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Ave 
Period 

Error 

Sqt2log 320 663 1045 1394 1785 369 4.85%  
bior 3.9 Birgé-Massart Alpha=4  319 669 1068 1390 1767 361 7.87% 

Sqt2log 320 664 1044 1394 1776 364 4.71%  
bior 6.8 Birgé-Massart Alpha=4 337 689 1041 1409 1793 364 3.64% 

The characteristic defect frequency is 550 Hz. So the corresponding period value is 
363.64 when sampling rate is set to 200 kHz. All the estimated average periods from 
Table 2 are close to 363.64 and Birgé-Massart gets the best performance for less bias. 
Moreover, basis bior6.8 is more suitable in this case for its estimated periods have less 
bias and error.  

CONCLUSIONS 

In this paper, Acoustic Emission signal denoising problem is studied based on Discrete 
Wavelet Transform thresholding methods. The denoised Acoustic Emission signals 
allow detection of the defect and identification of the type of bearing defect. The 
Donoho-Johnstone threshold method and parameter method are studied. The penalized 
method is not suitable for broadband AE signal adaptive denoising. SURE is the most 
conservative thresholding estimator. Birgé-Massart strategy selects very high 
thresholds at low levels 1 and 2. Birgé-Massart strategy outperforms other estimators. 
Care has to be taken on selecting wavelet basis properly to reduce the bias and error.  
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