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Abstract 
A network of mobile microphone arrays (nodes) has been created to identify and track noise 
sources in an outdoor environment. Collaborative signal processing is exploited: individual 
nodes with limited processing power and access to the local environment relay information to 
a central-level composite tracking system (fusion center). The nodes are able to detect noise 
sources, calculate the relative direction, and perform gross classification. The fusion center is 
responsible for associating detections to form noise events, associating events to objects, and 
then tracking those objects. Association is accomplished by a series of classification 
algorithms and decision logic. Information is stored on the objects’ location, speed, heading, 
track, and noise character: impulsive, tonal, or broadband. Results from experiments run in an 
outdoor suburban environment demonstrate performance and the complexity of the problem. 
Challenges and directions for future research are discussed. 

INTRODUCTION 

The study of distributed sensor networks is a rapidly growing field with a wide array 
of applications. One important application is acoustic surveillance, or the localization 
and tracking of noise sources in an environment. Such as system could localize 
snipers, and/or track military vehicles. If the system is mounted on autonomous 
vehicles, it could eventually replace humans on dangerous scouting missions.  

To ensure a robust system (i.e. capable of handling the loss of sensors and/or 
sensor nodes), a collaborative signal processing architecture has been adopted for the 
current research of tracking noise sources in a realistic environment. The system 
architecture will now be discussed referring to Figure 1, also introducing terminology 
in italics. Multiple acoustic sensors are attached to a node, which has local 
computational processing ability, GPS for position, a magnetic compass for 
orientation, and wireless networking capability. The node processes all the 
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information from the acoustic sensors and sends data on detections, which are 
currently defined as high acoustic levels, or changes in one or several acoustic metrics 
(relative angle, power spectra levels, etc). This reduced information is sent to the 
central command fusion center, which will fuse the node information to events 
(source localization), merge events to objects (object classification), and merging 
objects to paths (tracking).  
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Figure 1. Schematic of system architecture.   

The goal of this system is to develop a reliable estimate of the acoustic 
environment. Since this system is statistically based, events that are detected by a 
subset of nodes will be incorporated into the current model of the environment by the 
fusion center. Persistent events that are detected by one node only will also be 
modeled, and the fusion center may also re-direct a mobile node to investigate further 
to triangulate, or to acquire information for a more reliable estimate.  

This paper will review the developed node processing and fusion center 
algorithms, and present the experimental investigation and results, followed by 
conclusions and future work. 

ALGORITHMS 

Node Processing 

There are three algorithms applied to reduce the broadband acoustic data to event 
features. The first is an event detection algorithm, which compares the current power 
at the sensors to the previous power. If the power has increased, or is above a certain 
level (approximately 50 dB) and is tonal, then the algorithm assumes there is an event 
to process. The second algorithm is the localization algorithm, based on previous 
work by Carneal, et. ali and is presented in a companion paperii. This work efficiently 
determines the relative angle of arrival (AOA) of the event to the node (sensor array). 
The third algorithm is a characterization algorithm, where the beamformed signal is 
characterized as impulsive, tonal, or broadband, and the third octave power is 
calculated. These algorithms will not be discussed in detail, but can be found in the 
aforementioned references. 
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Fusion Center 

The Fusion Center employs 
composite tracker system 
architecture, incorporating inputs 
from several sensor nodes to arrive at 
a single classified event.  After 
detection and local processing, a node 
transmits a feature vector (FV) to the 
Fusion Center containing the node 
name, node location, and 
concentrated features corresponding 
to the detection: time of detection, 
angle of arrival, impulsiveness, 
tonality, and 1/3 octave band power levels.  The feature vectors are combined through 
a series of data association algorithms which yields a classified event.  Tracking 
objects is accomplished using a Kalman filter to process events.  This section outlines 
the procedure of three data association algorithms (associating node detections to 
observations, fusing observations to an event, associating events to objects) and 
tracking detected objects.   
 
  Detection Association 
Event localization is performed using triangulation of AOA from individual nodes. 
Without loss of generality, consider two nodes coplanar with one far-field noise event 
as described by the geometry of Figure 2.  The sound from an impulsive source S 
reaches Node 1 at time td1 at AOA β1 and Node 2 at time td2 at AOA β2.   

For an event to be fused, the lines of bearings (LOBs) must intersect, which is 
dependant on the angle (α), between the two nodes in question.  If this condition is 
met, the LOBS are triangulated to obtain a position fix of the source in cartesian 
coordinates according to equations: 
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where δx and δy  are the distance between the nodes in the x and y directions 
respectively.  One consequence of transforming the two degrees of freedom from 
angular measurements to cartesian coordinates is geometric dilution of precisioniii.  
This error is dependant on the node source spatial configuration.  The individual 
variances of the angle measurements can be propagated to a coupled cartesian 
covariance matrix using uncertainty analysisiv.   

Using the proposed position fix calculated using equations 1,2, the time of 
event (TOE) is calculated by back propagating the acoustic wavefront.   
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A range test is then made by comparing the TOEs of the following form: 
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dTTOETOE <− 21  (4) 
where the event detection window, Td, is some threshold dependant on the 
measurement noise covariance and detection time quality.      

After an event detection window is closed, associated detections are sent to the 
observation fuser.  Each pair of detections is localized separately to yield an 
independent observation and covariance matrix.  If an event detection window 
containing a single detection closes, the noise is assumed to be a disturbance local to 
that node (windblown debris for example) and the detection is ignored.   

 
 Observation Fuser 
Due to geometric dilution of precision, the noise source location estimate in one 
dimension could be very poor while the other dimension is acceptable, as reflected in 
the measurement cross covariance matrix R.  Therefore, the x and y components of 
the observations are combined independently.  Consider the fusion of observations 
corresponding to the x coordinate of the source for simplicity, the y coordinate is 
evaluated identically.  The error of the ith observation is assumed to follow a normal 
distribution with mean μi and variance σi

2.  It can be shown that the mean and 
variance of the fused observation isv: 
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After the fused source location is calculated, the TOE is recalculated using 
equation 3.  A Kalman filter tracker requires measurements in temporal order.  By 
knowing the TOE, the common sensor network drawback of out of sequence 
measurements due to communication delays and acoustic wave propagation is 
circumvented.  The track can be rolled back, updated and re-propagated.   
 

Event to Object Association 
Information (TOE, rxs, rys, R, number of nodes detecting the event, sound type) is 
archived for each event.  Similarly, time dependent cues are maintained for each 
object utilizing a track before detect approach: spectral character, current position and 
speed and the corresponding covariance.  Similar to the detection association, each 
object-event combination is subject to a series of tests to discard unlikely matches.  
Association is based on spectral characteristics and location.  All objects 
characterized with an identical noise type as the event are considered for association.  
For the location test, we use the all neighbors approach for simplicityvi.  The 
correlation decision is based on a Chi-squared test of the following form: 

[ ] [ ] [ ] AzxRPzx pP
T

p <−+− − ˆˆ 1  (7) 

where xp denotes the position components of the object at the TOE,  Pp is the position 
components of the covariance matrix relating to the uncertainty in the current 
position.  The decision criterion, or “gate” is denoted by A.  If no existing objects are 
within the gate a new object and track is initiated.  Widening gates and maneuvers are 
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not considered.   
As the number of targets increases, it may be useful to solicit more data from a 

node and classify an object and measurement with more detail, allowing thresholds to 
be tightened.   
 

Tracking 
A four state linear coupled Kalman filtervii is employed for tracking objects.  The 
performance gains over a linear uncoupled filter are similar to that of the extended 
filter, with the additional benefit of robustness to initialization errorsviii.  The Kalman 
filter works in two stages, prediction and correction, to estimate the state of a 
dynamic system.  Prior to incorporation of measurements, the state vector, nx ℜ∈ , is 
projected ahead according to a discrete-time difference equation of the following 
form:   

11ˆˆ −−
− ++Φ= kkkk wBuxx  (8) 

where the hat denotes an estimate, the subscript k refers to the time step, and the 
superscript minus refers to a predicted estimate before incorporation of 
measurements.  Φ is the state transition matrix which relates 1ˆ −kx  to −

kx̂  according  to 
some deterministic motion model.  The matrix B relates the control input u to the state 
x, which is unknown and set to zero for this application.  wk is a Gaussian white noise 
sequence that accounts for the uncertainty in the process model.  A constant velocity 
motion model is used for simplicity.  While a lower order model is subject to 
divergence during maneuvers, it allows for better position estimates with fewer 
measurements. 

EXPERIMENTAL SETUP  

To test the aforementioned 
algorithms, a field experiment was 
performed to localize and track 
impulsive and tonal sources. Three 
static diffracting arrays were placed 
in an outdoor environment.  These 
arrays were all mounted on 8 inch 
diameter cylindrical tubes; two of the 
arrays had 12 microphones while the 
third array had 6 microphones.  The 
arrays were placed near intersection 
of two roads to record a static 
impulsive source and two moving 
tonal sources (transportation buses).  
All diffracting arrays were connected 
to the same data acquisition system and computer to guarantee time alignment of the 
signals, and the positions of the arrays were measured with respect to landmarks such 
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Figure 3. Aerial view of three static nodes, the 

impulse, and the moving tonal sources.  
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as stop signs.  Once several tests were performed, the previously described node 
processing algorithms were tested and refined on the recorded data. 

Bus 1Bus 2

Impulses

Array nodes  
Figure 4. Perspective photograph of three static nodes, the impulse, and the moving tonal 

sources.  

EXPERIMENTAL RESULTS 

Over a 40 second time interval, 105 feature vectors were transmitted to the fusion 
center. Several feature vectors were rejected since they did not meet the 
aforementioned conditions.  For example, a node may be listening to a more 
dominant source from another direction.  Another situation occurred when the LOBs 
intersected but either the range was too broad or the impulsive power threshold was 
not exceeded.     

Table 1.Percentage of feature vectors associated with known sources.  

 Both buses were strongly tonal and the tonal indicator consistently exceeded 
the threshold.  As a bus approached the nodes, closer nodes measured the bus while 
nodes farther were registering other noise sources, such as another vehicle.  Table 1 
shows the number of feature vectors associated with the three objects.  All of the 
events were associated to the correct objects by design of the gate threshold.  The 
targets were well separated within the small scale studied such that this approach, 
coupled with the noise type match condition, was sufficient to classify the targets.   

Tracking 

Figure 5 shows an aerial view of the impulse track, bus 1 track, and bus ground truth 
in the experiment. As can be seen, the acoustic tracking system is able to correctly 
associate and track both the impulsive and tonal (bus) sources. Note that there is some 
erroneous wandering present in the impulse track due to the constant velocity model 
being applied to a stationary object.  

 Clap 
(Impulsive) 

Bus 1 
(Tonal) 

Bus 2 
(Tonal) 

Total 

Transmitted FVs 30 51 24 105 
Associated FVs 27 45 20 92 
% Associated 90 88.2 83.3 87.6 
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For the bus track, the 
constant velocity model is able 
to track and predict the motion 
of the bus well.  The process 
noise model is able to account 
for the slight acceleration 
through the turn.  The 
measurements are biased in the 
y direction, possible due to 
reflections off the nearby 
building.  Furthermore, 
although modeled as a point 
source, the bus is a large object 
with many noise sources: tires, 
engine, exhaust, etc. which 
makes precise localization 
difficult. Overall, the ability of 
the distributed node system to 
identify and track impulsive 
and tonal sources has been 
demonstrated with little error. 

Further analysis of the impulsive and tonal (bus) track data is now presented in 
Error! Reference source not found. and Figure 7, respectively. The plots display 
the Kalman filter estimate, the actual measurements, the ground truth and the Kalman 
filter error bounds for the x- and y- coordinates. Note that the error bound is a 
measure of uncertainty in the estimate. As can be seen in these plots, the system is 
able to track both 
the impulsive and 
tonal sources. 
Referring to 
Error! Reference 
source not found., 
the localized 
events are centered 
around the true 
position of the 
source, and the 
system is able to 
accurately 
determine the position of the source within 0.3 meters with less than one meter 
standard deviation. Referring to  Figure 7, the system is able to accurately 
characterize, associate, and track the moving source. As previously mentioned, the y- 
estimate of the tonal (bus) source exhibits some error in the 27 to 30 second 
timeframe. Since this error is position dependent, it can be attributed to strong 
building reflections. 
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Figure 5.  Overview of experimental environment 
showing the tracks of the claps (blue) and the first 
bus.  Events are signified by an ‘x’.  The projected 
ground truth of the bus is also shown (dotted line).  

(0.65,0.96)Standard Deviation

(-16.3,3.7)Average

(-16,4)Ground Truth

Value (m)Parameter

(0.65,0.96)Standard Deviation

(-16.3,3.7)Average

(-16,4)Ground Truth

Value (m)Parameter

-20 -15 -10

0

5

10

x Position [m]

y 
P

os
iti

on
 [m

]

Localized Events
Estimated Position
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comparison of track with ground truth. 
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(a)        (b) 

Figure 7. (a) Kalman filter track (x coordinate) for bus 1. (b) Kalman filter track (y 
coordinate) for bus 1. 

CONCLUSIONS 

A system for tracking noise sources using multiple mobile microphone arrays has 
been developed and demonstrated on real-world data. A distributed hierarchical 
processing methodology has been implemented and was able to track impulsive and 
tonal sources. The node processing algorithms have been developed to reduce the 
time-series microphone data to feature vectors. These feature vectors were then sent 
to a fusion center which correctly localized, associated, and tracked the noise source 
objects.  

Future work will include refinement of all the algorithms, from node processing 
to data association and fusion. More advanced Kalman filter models to include 
acceleration and motion of the array itself will be investigated.  
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