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Abstract

Force prediction can basically be done by two methods: direct methods pdimization
methods. Direct methods use the inverse of the forward system model tdatalthe ex-
citation directly from the measured responses. Optimization methods use ardamodel
in an optimization loop wherein the input to the forward model is adjusted until treelmo
responses matches the measured responses. In practice, a direct ns@tigean experimen-
tally obtained Frequency Response Function (FRF) is generally usedifiédtt method can
be applied iteratively to enable convergence towards an excitation sidyesi dealing with
nonlinear systems. Previous research of the authors, applying swedaa highly non-
linear multibody quarter car model, showed an acceptable match betweencthlatea and
the original excitation. However, the iterative process takes many stepeesmus user in-
teraction to reach overall convergence, like the manual exclusion frentirtte signal of
excitation peaks that cause divergence. The test case is a reptigsdrgachmark for real
life problems. This paper focuses on the improvement of speed andmebaof force pre-
diction methods when dealing with nonlinear systems. Contrary to commercied,cotiere
the system model is treated as a black-box, we use a-priori knowledge ®fstem dynamics
obtained from parametric modeling. We set out from the direct method usngwérse FRF.
A simple demonstrator has been built consisting of a beam, clamped at oneditfeather
side subjected to different end conditions: free and supported byudsiegp magnet. The
demonstrator has also been modeled in a multibody code supporting flexilids todcknable
preliminary research and to compare experiments and simulations. Thisipagstricted to
the reconstruction of harmonic forces acting at known locations with difteamplitudes and
frequencies.
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INTRODUCTION

Due to the increasing demand for light weight constructions in cars, mdagigaie becomes
a key design driver. In vehicle durability testing responses to road &rcitare measured
in real life and then replicated on a test-rig. The calculation of the excitatioalsigdrives)
to the test-rig such that the test-rig responses equal the real life tagpenses, is called
drive file development. One of the aims of this project is the improvement ofpibedsand
robustness of this calculation. Drive file development is a specific cdeecafprediction, i.e.
the calculation of excitation via known responses.

Force prediction can basically be done by two methods [1]dtrexct method and the
optimizationmethod.
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Figure 1: Direct (force prediction) method Figure 2: Optimization method

Direct methods use the inverse of the forward system model to calculateditetion
directly from the measured responses, c.f/fig. 1. Optimization methodsfosgaad model
in an optimization loop where the input to the forward model is adjusted until thesimod
responses match the measured responses; the model input is then assaqed the orig-
inal excitation, c.f. fig. 2. Most force prediction methods are direct methsee e.g. [2]. In
general, a shift is going on from methods in the frequency domain towagdintle domain
[3]. Main reason for this is the inability to capture very time limited events in theuiaqy
domain. These events play an important role in exciting nonlinearities. Few astéwane
been made to force prediction on strongly nonlinear systems e.g. [4]. € firoblems the
optimization methods seem most suited.

Mainly due to the ease of and experience with frequency domain systetifiaigion,
commercial drive file development codes used in the automotive industty tygpdirect
method with a FRF system model. To avoid over-excitation and thus probablzggavhen
dealing with nonlinear systems, the direct method is applied iteratively, calytiopdating
the excitation.

To gain insight in the effects of applying a direct method to a nonlinear systeen
dealing with non-periodic responses, we examine a simple demonstratodemunstrator
consists of a beam, clamped at one end and at the other end free (liseqrocawith a
repulsing magnet (nonlinear case). Force prediction is an inherentlyséepproblem, i.e.
there is no unique solution, unless a-priori information is provided. Wether assume the
location where the unknown force acts to be known. We restrict ousstltee reconstruction
of harmonic excitations in this paper.
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LINEAR DEMONSTRATOR: CLAMPED-FREE BEAM

The linear demonstrator consists of a clamped-free aluminium beam with dimsrasdn
fig.|3, equipped with four accelerometers and excited by shakers vig@stitgensure excita-
tion normal to the beam. The force transducers are mounted directly to time Dea magnets
shown in this figure are not part of the linear demonstrator.
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Figure 3: Demonstrator beam

Analytical and experimental FRFs

The FRR,; between acceleration$ (w) measured at positiary and a harmonic forcéy, (w)
at positionzy, is given by [5]:

A :B $l (Pr(xk)
FRE, = = -’ !
ki (1, Tk Fi( w Z w2+w2 ) + j2wwyC, @)

Wherew is the angular excitation frequenay, the r** angular eigenfrequency;, the "
normal mode, the imaginary unit and,. the viscous damping ratio of thé” mode. Only
the first four modes are taken into account in the analytical FRF, restriatiograte model
behavior to a frequency range up to 500 Hz. Both the analytically andiexgetally derived
eigenfrequencies of these modes are given in tab. 1 along with their machgling ratios
that were defined experimentally.

FRF  fi[Hz]  fo[Hz]  fs[Hz]  fa[HZ]

analytical 10.3 64.4 180.4 353.5
experimental 10.5 63.5 178.8 352.3
damping Gl Gl Gl Gl

experimental 12-107% 7.107®* 4.10®* 19.1073

Table 1: First four analytical and experimental eigenfrequencies andi#meping ratios

Figure 4 shows the moduli of the analytically and experimentally determined felRFs
excitation at0.3L to the sensors dt.3L and L. The FRFs show a reasonable match in the
resonances; the mismatches in the higher (anti-)resonances are maindyrchtenodeling
the contribution of the added mass of the sensor and shakers analyti¢sdlyh& positions of
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shakers and sensors will differ slightly between the experimental arigtisaamodel. How-
ever, the degree of correspondence between the analytical arihesapial FRFs is sufficient
to get familiar with the pitfalls of the direct inverse method.

FRFFy.31 to A3 FRFFy 31, to A1,
Y i
= £
E £
< £
< 10 exp.|| < 10° exp.
anlyt anlyt,
0 100 200 300 400 500 0O 100 200 300 400 50C
frequency [Hz] frequency [Hz]

Figure 4: Analytical and experimental FRFs

To check the assumed linearity of this demonstrator, the FRF from the shiakér,
to the sensor at. was determined at different excitation levels in the range of our interest.
Figure! 5 shows these FRFs along with the coherence. Since the FRFsaakhe identical
and the coherence is excellent, it can be stated that the demonstratoedéhearly in the
excitation range of interest.
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Figure 5: FRFs and coherences from excitation at 0.6L to a sensor at 1L

Force prediction

Reconstruction of the applied force is done by multiplying the responses vétintierse
transferH,,,. Here the transfeH,,,, is a matrix of FRFs (FRM) fromn excitations tom
Sensors.

Fo(w) = Hym(w) A (W) 2)

whereF, is the reconstructed force vector adg, is the vector of accelerations responses
in the frequency domain. In case of a linear analytical model and analytidatiyed re-
sponses this gives exact results. Using the experimentally deriveéetréhs, and measured
responses, three main sources of error exist:

e inaccuracies in the experimentally determined FRFs
e measurement noise
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e insufficient/inaccurate sensor data

It is obvious that an inaccurate model cannot lead to good force pradietsults. The
locations of the sensors and shakers during system identification sheelibtly equal to
the locations during the response measurement. Measurement noise is theoorai of
erratic results. The influence of noise during system identification is sapgd by using the
so calledH;,,,, estimator:

_ Saf(w) _ An(W) (W)

= 3 3)

M) = 5 10) ~ Fr(@)Fu()

whereS, s (w) is the cross-spectrum between the measured accelerafighsand the forces
fn(t), S¢r(w) is the auto-spectrum of the excitation @ndenotes the complex conjugate. The
use of the cross-spectrum removes uncorrelated noise between eratatioesponse from
the transfer. However, noise can still disturb force prediction. Supfiesmeasured response
Ay, (w) is the sum of the true respondg,(w) and some noisé&/,,,(w). Then the predicted
force is given by [2]:

Fo(w) = Hy, (0)Am(w) = Hy ! (@0)Yi(w) + Hy) (@) Nin(w) (4)

nm nm nm

If |Hq(w)|is very small at a certain frequency (as in anti-resonances, clf. fitheh|Y (w)|

is also small and hence the second term in_eq. 4 becomes dominant at dgu@nfrg The

noiseN (w) is amplified by the division through the small; (w)|. This is illustrated in fig. 6,

where the true forcé” is shown together with a predicted foréeusing the analytical model
and the corresponding analytical responses contaminated with aboutdiés The FRF is
shown to indicate the anti-resonances, e.g. at 120 Hz.

Noise amplification by anti-resonances
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Figure 6: Noise amplification in anti- Figure 7: Condition of the FRM
resonances

Since the anti-resonance frequencies differ from sensor positiomsmisposition, it
is often beneficial to use more sensors than forces to be reconstrBoted< n andH;,,,,
is no longer square. Using the pseudo-inveﬁ{sfgm now gives a least-squares estimate of the
solution to the over-determined system:
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Fo(w) = Hf (0)An(w), HY  =I[H] Hi,,] 'H] (5)

1nm

whererIm (or: H{*) is the transpose of the complex conjugaterf, . Adding more
sensor data not necessarily improves the force estimate since low quadity siata can also
be included. Figure 7 shows the condition number of the analytical FRM aflisgnsor data
or a combination of two of them. The condition number of a FRM is the value of itselsig
singular value divided by the smallest. A high condition number indicates illitonohg
since the reciprocal of a very small singular value will become large amskecamplification
of small errors. Replacing very small singular values by zero is comleaveth ignoring
low quality sensor data and is applied in a regularization technique calledatathSingular
Value Decomposition (TSVD) [2].

NONLINEAR: CLAMPED-MAGNETICALLY SUPPORTED BEAM

The strongest nonlinearity in this project's benchmark, i.e. a car sugpelis caused by
the bump-stop event, when the spring is fully compressed. Two repulsingatsagrovide a
non-contact approximation of this event. Moreover, this non-contadirmearity allows more
accurate analytical modeling than e.g. a nonlinear spring. Thereforeytimdrical magnets
are mounted as indicated in fig. 3. The specifications of the magnets andmiable 2. The
magnets are mounted such that their separation at rest is about 12 mmgaiefteation of
the beam tip.

Force between two magnets vs. their separation

» measured point]|
— fitted relation ||

F,=7-10"%/d'6
\ magnet dimensions

diameter 14 [mm]
height 2.5 [mm]

1t *

inter magnet forcek-) [N]
N

*

*

s 6 7 8 9 10 weight 3 [gr]
inter magnet distancel( [m] x10 ~° material neodymium
Figure 8: Fitted magnet characteristic Table 2: Magnets

The maximal excitation during the experiments was such that the minimal distaioeche

the magnets was about 5 mm. The repulsive foiicd petween the magnets versus their
separationd) was measured. The measured points are plotted in/fig. 8 along with the fitted
relation. A relation of the form¥,(d) = C * d® has been fitted because of the theoretical
relation between rejecting magnetic monopoles fi,e= C/d? whereC is a certain constant.

Numerical and experimental FRFs

The FRFs have been determined experimentally at different levels of txcitaith three
types of excitation: the impact hammer, white noise and a linear frequenapsiekirp).
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The nonlinear effects are most visible in the chirp based FRFs. Figurevgsssuch a FRF:
the changes in the moduli around the eigenfrequencies clearly indicdiraauity.

FRF from excitationF}, at 0.3L to responsd; at 1L
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Figure 9: FRF from excitation at 0.3L to a sensor at 1L, with zooms

It is expected that one harmonic force at a certain excitation level caredeed accurately
using a matching transfer identified at the same level. However, the inmé &mplitude
was not controlled, therefore the excitation signals from the force tuaesd are influenced
by the shaker dynamics and their frequency spectrum shows no cbastglitude. In future
experiments we will control the applied force instead of the input voltage tehtakers.

Force prediction

Figure 10 shows the reconstruction of a single harmonic force of 20 613 Awith an ampli-
tude of about 2 N, using the FRFs identified at the excitation levels 1 and BeNnTluence of
the chosen transfer is clear and a correct prediction should be postible matching FRF.
The unwanted higher harmonics of the true excitation force due to the nantinendicate
the shaker dynamics’ influence on the true excitation signal.

Since linear superposition of the responses to multiple forces is no longertkare is
not onecorrect excitation level FRF to predict multiple harmonic forces, or excitdhiahis
non-periodic with large differences in amplitude like road excitation dataghicle durability
testing. The next step in this research will be to examine this kind of excitation.
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Figure 10: Force prediction using transfef$ identified at different excitation levels

SUMMARY

To research the applicability and possible improvements of the direct foeckcpion ap-

proach when dealing with nonlinearities, a nonlinear demonstrator is stustied bmerically

and experimentally. However, to fully understand the effect of the dicgce prediction ap-
proach in the frequency domain, first a linear demonstrator has beeedstodth analytically
and experimentally. The linear demonstrator consists of a clamped-free hea points of

concern when using the inverse FRF in force prediction on the linear dgrator have been
illustrated. Subsequently the nonlinear behavior was invoked by placingaetan the alu-
minium beam and mounting a fixed, equal and repulsing magnet next to it. Ttpeetsa
nonlinear characteristic and its influence on the shape of the chirp-iddriEiRE, has also
been illustrated. The effect of the nonlinearity on the force predictioraohbnic forces has
been indicated. Further research on the nonlinear demonstrator will entthedreconstruc-
tion on non-periodic forces, the applicability of the direct force predictimthod in other
domains and the use of the optimization approach.
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