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Abstract
Force prediction can basically be done by two methods: direct methods and optimization
methods. Direct methods use the inverse of the forward system model to calculate the ex-
citation directly from the measured responses. Optimization methods use a forward model
in an optimization loop wherein the input to the forward model is adjusted until the model
responses matches the measured responses. In practice, a direct method using an experimen-
tally obtained Frequency Response Function (FRF) is generally used. The direct method can
be applied iteratively to enable convergence towards an excitation signal when dealing with
nonlinear systems. Previous research of the authors, applying such a code to a highly non-
linear multibody quarter car model, showed an acceptable match between the calculated and
the original excitation. However, the iterative process takes many steps and needs user in-
teraction to reach overall convergence, like the manual exclusion from the time signal of
excitation peaks that cause divergence. The test case is a representative benchmark for real
life problems. This paper focuses on the improvement of speed and robustness of force pre-
diction methods when dealing with nonlinear systems. Contrary to commercial codes, where
the system model is treated as a black-box, we use a-priori knowledge ofthe system dynamics
obtained from parametric modeling. We set out from the direct method using the inverse FRF.
A simple demonstrator has been built consisting of a beam, clamped at one side and the other
side subjected to different end conditions: free and supported by a repulsing magnet. The
demonstrator has also been modeled in a multibody code supporting flexible bodies, to enable
preliminary research and to compare experiments and simulations. This paperis restricted to
the reconstruction of harmonic forces acting at known locations with different amplitudes and
frequencies.
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INTRODUCTION

Due to the increasing demand for light weight constructions in cars, materialfatigue becomes
a key design driver. In vehicle durability testing responses to road excitation are measured
in real life and then replicated on a test-rig. The calculation of the excitation signals (drives)
to the test-rig such that the test-rig responses equal the real life target responses, is called
drive file development. One of the aims of this project is the improvement of the speed and
robustness of this calculation. Drive file development is a specific case offorce prediction, i.e.
the calculation of excitation via known responses.

Force prediction can basically be done by two methods [1]: thedirect method and the
optimizationmethod.
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Direct methods use the inverse of the forward system model to calculate the excitation
directly from the measured responses, c.f. fig. 1. Optimization methods use aforward model
in an optimization loop where the input to the forward model is adjusted until the model
responses match the measured responses; the model input is then assumedto equal the orig-
inal excitation, c.f. fig. 2. Most force prediction methods are direct methods, see e.g. [2]. In
general, a shift is going on from methods in the frequency domain towards the time domain
[3]. Main reason for this is the inability to capture very time limited events in the frequency
domain. These events play an important role in exciting nonlinearities. Few attempts have
been made to force prediction on strongly nonlinear systems e.g. [4]. For these problems the
optimization methods seem most suited.

Mainly due to the ease of and experience with frequency domain system identification,
commercial drive file development codes used in the automotive industry apply the direct
method with a FRF system model. To avoid over-excitation and thus probable damage when
dealing with nonlinear systems, the direct method is applied iteratively, cautiously updating
the excitation.

To gain insight in the effects of applying a direct method to a nonlinear systemwhen
dealing with non-periodic responses, we examine a simple demonstrator. Thedemonstrator
consists of a beam, clamped at one end and at the other end free (linear case) or with a
repulsing magnet (nonlinear case). Force prediction is an inherently ill-posed problem, i.e.
there is no unique solution, unless a-priori information is provided. We therefore assume the
location where the unknown force acts to be known. We restrict ourselves to the reconstruction
of harmonic excitations in this paper.



ICSV13, July 2-6, 2006, Vienna, Austria

LINEAR DEMONSTRATOR: CLAMPED-FREE BEAM

The linear demonstrator consists of a clamped-free aluminium beam with dimensions as in
fig. 3, equipped with four accelerometers and excited by shakers via stingers to ensure excita-
tion normal to the beam. The force transducers are mounted directly to the beam. The magnets
shown in this figure are not part of the linear demonstrator.
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Figure 3: Demonstrator beam

h = 2 · 10−3 m
b = 26 · 10−3 m
L = 0.4 m
E = 70 · 109 MPa
ρ = 2.7 · 103 kg/m3
y(x, t) = deflection
Fr = repulsive force

Analytical and experimental FRFs

The FRFkl between accelerationsAl(ω) measured at positionxl and a harmonic forceFk(ω)

at positionxk is given by [5]:

FRFkl(xl, xk) =
Al(xl)

Fk(xk)
= −ω2

∑

r

ϕr(xl)ϕr(xk)

(−ω2 + ω2
r ) + j2ωωrζr

(1)

Whereω is the angular excitation frequency,ωr the rth angular eigenfrequency,ϕr the rth

normal mode,j the imaginary unit andζr the viscous damping ratio of therth mode. Only
the first four modes are taken into account in the analytical FRF, restrictingaccurate model
behavior to a frequency range up to 500 Hz. Both the analytically and experimentally derived
eigenfrequencies of these modes are given in tab. 1 along with their modal damping ratios
that were defined experimentally.

FRF f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz]

analytical 10.3 64.4 180.4 353.5
experimental 10.5 63.5 178.8 352.3

damping ζ1 [-] ζ1 [-] ζ1 [-] ζ1 [-]

experimental 12 · 10−3 7 · 10−3 4 · 10−3 19 · 10−3

Table 1: First four analytical and experimental eigenfrequencies and thedamping ratios

Figure 4 shows the moduli of the analytically and experimentally determined FRFsfor
excitation at0.3L to the sensors at0.3L andL. The FRFs show a reasonable match in the
resonances; the mismatches in the higher (anti-)resonances are mainly dueto not modeling
the contribution of the added mass of the sensor and shakers analytically. Also the positions of
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shakers and sensors will differ slightly between the experimental and analytical model. How-
ever, the degree of correspondence between the analytical and experimental FRFs is sufficient
to get familiar with the pitfalls of the direct inverse method.
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Figure 4: Analytical and experimental FRFs

To check the assumed linearity of this demonstrator, the FRF from the shakerat 0.6L

to the sensor atL was determined at different excitation levels in the range of our interest.
Figure 5 shows these FRFs along with the coherence. Since the FRFs are nearly identical
and the coherence is excellent, it can be stated that the demonstrator behaves linearly in the
excitation range of interest.
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Figure 5: FRFs and coherences from excitation at 0.6L to a sensor at 1L

Force prediction

Reconstruction of the applied force is done by multiplying the responses with the inverse
transferHnm. Here the transferHnm is a matrix of FRFs (FRM) fromn excitations tom
sensors.

F̂n(ω) = Hnm(ω)−1Am(ω) (2)

whereF̂n is the reconstructed force vector andAm is the vector of accelerations responses
in the frequency domain. In case of a linear analytical model and analyticallyderived re-
sponses this gives exact results. Using the experimentally derived transfer Hnm and measured
responses, three main sources of error exist:

• inaccuracies in the experimentally determined FRFs
• measurement noise
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• insufficient/inaccurate sensor data

It is obvious that an inaccurate model cannot lead to good force prediction results. The
locations of the sensors and shakers during system identification should be exactly equal to
the locations during the response measurement. Measurement noise is the mainsource of
erratic results. The influence of noise during system identification is suppressed by using the
so calledH1nm

estimator:

H1nm
(ω) =

Saf (ω)

Sff (ω)
=

Am(ω)F ∗
n(ω)

F ∗
n(ω)Fn(ω)

(3)

whereSaf (ω) is the cross-spectrum between the measured accelerationsam(t) and the forces
fn(t), Sff (ω) is the auto-spectrum of the excitation and∗ denotes the complex conjugate. The
use of the cross-spectrum removes uncorrelated noise between excitation and response from
the transfer. However, noise can still disturb force prediction. Suppose the measured response
Am(ω) is the sum of the true responseYm(ω) and some noiseNm(ω). Then the predicted
force is given by [2]:

F̂n(ω) = H−1
1nm

(ω)Am(ω) = H−1
1nm

(ω)Ym(ω) + H−1
1nm

(ω)Nm(ω) (4)

If |H1(ω)| is very small at a certain frequency (as in anti-resonances, c.f. fig. 4), then|Y (ω)|

is also small and hence the second term in eq. 4 becomes dominant at that frequency. The
noiseN(ω) is amplified by the division through the small|H1(ω)|. This is illustrated in fig. 6,
where the true forceF is shown together with a predicted forcêF using the analytical model
and the corresponding analytical responses contaminated with about 10%noise. The FRF is
shown to indicate the anti-resonances, e.g. at 120 Hz.
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Figure 6: Noise amplification in anti-
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Figure 7: Condition of the FRM

Since the anti-resonance frequencies differ from sensor position to sensor position, it
is often beneficial to use more sensors than forces to be reconstructed.Som < n andH1nm

is no longer square. Using the pseudo-inverseH+
1nm

now gives a least-squares estimate of the
solution to the over-determined system:
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F̂n(ω) = H+
1nm

(ω)Am(ω), H+
1nm

= [H∗T
1nm

H1nm
]−1H∗T

1nm
(5)

whereH∗T
1nm

(or: HH
1nm

) is the transpose of the complex conjugate ofH1nm
. Adding more

sensor data not necessarily improves the force estimate since low quality sensor data can also
be included. Figure 7 shows the condition number of the analytical FRM usingall sensor data
or a combination of two of them. The condition number of a FRM is the value of its highest
singular value divided by the smallest. A high condition number indicates ill-conditioning
since the reciprocal of a very small singular value will become large and cause amplification
of small errors. Replacing very small singular values by zero is comparable with ignoring
low quality sensor data and is applied in a regularization technique called Truncated Singular
Value Decomposition (TSVD) [2].

NONLINEAR: CLAMPED-MAGNETICALLY SUPPORTED BEAM

The strongest nonlinearity in this project’s benchmark, i.e. a car suspension, is caused by
the bump-stop event, when the spring is fully compressed. Two repulsing magnets provide a
non-contact approximation of this event. Moreover, this non-contact nonlinearity allows more
accurate analytical modeling than e.g. a nonlinear spring. Therefore two cylindrical magnets
are mounted as indicated in fig. 3. The specifications of the magnets are given in table 2. The
magnets are mounted such that their separation at rest is about 12 mm; causing deflection of
the beam tip.
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Figure 8: Fitted magnet characteristic

magnet dimensions

diameter 14 [mm]
height 2.5 [mm]
weight 3 [gr]

material neodymium

Table 2: Magnets

The maximal excitation during the experiments was such that the minimal distance between
the magnets was about 5 mm. The repulsive force (Fr) between the magnets versus their
separation (d) was measured. The measured points are plotted in fig. 8 along with the fitted
relation. A relation of the formFr(d) = C ∗ db has been fitted because of the theoretical
relation between rejecting magnetic monopoles, i.e.Fr = C/d2 whereC is a certain constant.

Numerical and experimental FRFs

The FRFs have been determined experimentally at different levels of excitation with three
types of excitation: the impact hammer, white noise and a linear frequency sweep (chirp).
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The nonlinear effects are most visible in the chirp based FRFs. Figure 9 shows such a FRF:
the changes in the moduli around the eigenfrequencies clearly indicate nonlinearity.
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Figure 9: FRF from excitation at 0.3L to a sensor at 1L, with zooms

It is expected that one harmonic force at a certain excitation level can be predicted accurately
using a matching transfer identified at the same level. However, the input force amplitude
was not controlled, therefore the excitation signals from the force transducers are influenced
by the shaker dynamics and their frequency spectrum shows no constant amplitude. In future
experiments we will control the applied force instead of the input voltage to theshakers.

Force prediction

Figure 10 shows the reconstruction of a single harmonic force of 20 Hz at0.3L with an ampli-
tude of about 2 N, using the FRFs identified at the excitation levels 1 and 4 N. The influence of
the chosen transfer is clear and a correct prediction should be possiblewith a matching FRF.
The unwanted higher harmonics of the true excitation force due to the nonlinearity indicate
the shaker dynamics’ influence on the true excitation signal.

Since linear superposition of the responses to multiple forces is no longer valid, there is
not onecorrect excitation level FRF to predict multiple harmonic forces, or excitationthat is
non-periodic with large differences in amplitude like road excitation data for vehicle durability
testing. The next step in this research will be to examine this kind of excitation.
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Figure 10: Force prediction using transfersH identified at different excitation levels

SUMMARY

To research the applicability and possible improvements of the direct force prediction ap-
proach when dealing with nonlinearities, a nonlinear demonstrator is studied both numerically
and experimentally. However, to fully understand the effect of the directforce prediction ap-
proach in the frequency domain, first a linear demonstrator has been studied, both analytically
and experimentally. The linear demonstrator consists of a clamped-free beam. The points of
concern when using the inverse FRF in force prediction on the linear demonstrator have been
illustrated. Subsequently the nonlinear behavior was invoked by placing a magnet on the alu-
minium beam and mounting a fixed, equal and repulsing magnet next to it. The magnets’
nonlinear characteristic and its influence on the shape of the chirp-identified FRF, has also
been illustrated. The effect of the nonlinearity on the force prediction of harmonic forces has
been indicated. Further research on the nonlinear demonstrator will include the reconstruc-
tion on non-periodic forces, the applicability of the direct force predictionmethod in other
domains and the use of the optimization approach.
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