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Abstract
We discuss efficient numerical methods for the boundary integral formulation of various three
dimensional boundary value problems for the Helmholtz equation. The corresponding bound-
ary integral equations will be discretised using the Galerkin method leading to a system of
linear equations with a dense matrixA of some dimensionN . A naive strategy for the so-
lution of the corresponding linear systems would need at leastO(N2) arithmetical opera-
tions and memory. In contrast, the Adaptive Cross Approximation method (ACA) generates
the low-rank approximant of the matrix by the use of only few matrix entries leading to al-
most linear complexity. The efficiency and convergence properties of the numerical method
(Galerkin discretisation, ACA approximation of matrices, iterative solution) will be illustrated
for a number of different boundary value problems and for various surfaces.

INTRODUCTION

The solutions of second order partial differential equations can be described by certain sur-
face and volume potentials when a fundamental solution of the underlying partial differential
equation is known. Although the existence of such a fundamental solution can be guaranteed
for a wide class of partial differential operators, see for example [1], the explicit construc-
tion of fundamental solutions is possible only for partial differential equations with constant
coefficients. In particular, the Helmholtz equation can be solved by the use of boundary in-
tegral equations and boundary element methods (BEM). The reduced wave equation or the
Helmholtz equation in a bounded Lipschitz domainΩ ⊂ R3 with the boundaryΓ is

−∆u(x)− κ2u(x) = 0 for x ∈ Ω , (1)

whereκ > 0 is the wave number. The solution of (1) is given by the representation formula

u(x) =
∫

Γ

u∗κ(x, y)γ int
1 u(y)dsy −

∫

Γ

γ int
1,yu

∗
κ(x, y)γ int

0 u(y)dsy (2)
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for x ∈ Ω. In (2), the fundamental solution of the Helmholtz equation (1)

u∗κ(x, y) =
1
4π

eı κ|x−y|

|x− y| for x, y ∈ R3. (3)

has been used. The symbolγ int
0 denotes the interior trace operator whileγ int

1 is the interior
conormal derivative. Now we define the boundary integral operators. The single layer poten-
tial operatorVκ : H−1/2(Γ) → H1/2(Γ) , is

(Vκw)(x) =
1

4π

∫

Γ

eı κ|x−y|

|x− y| w(y)dsy for x ∈ Γ .

If Γ is a Lipschitz boundary, the operatorVκ−V0 : H−1/2(Γ) → H1/2(Γ) is compact. Since
the single layer potentialV0 of the Laplace operator isH−1/2(Γ)–elliptic, the single layer
potentialVκ is coercive, i.e. with the compact operatorC = V0− Vκ, the G̊ardings inequality

〈(Vk + C)w,w〉Γ = 〈V0w,w〉Γ ≥ cV0
1 ‖w‖2

H−1/2(Γ)
for all w ∈ H−1/2(Γ)

is satisfied. The double layer potential operatorKκ : H1/2(Γ) → H1/2(Γ) is

(Kκv)(x) = lim
ε→0

1
4π

∫

y∈Γ:|y−x|≥ε

(
∇y

eı κ|x−y|

|x− y| , n(y)
)
v(y)dsy for x ∈ Γ .

Its adjoint operatorK ′
κ : H−1/2(Γ) → H−1/2(Γ) is given by

(K ′
κw)(x) = lim

ε→0

1
4π

∫

y∈Γ:|y−x|≥ε

(
∇x

eı κ|x−y|

|x− y| , n(x)
)
w(y)dsy .

The conormal derivative of the double layer potential defines the hypersingular boundary
integral operatorDκ : H1/2(Γ) → H−1/2(Γ) . For a Lipschitz boundaryΓ, the modified
operatorDκ −D0 : H1/2(Γ) → H−1/2(Γ) is compact. Since the regularised hypersingular
boundary integral operatorD0 + I of the Laplace operator isH1/2(Γ)–elliptic, and since the
embeddingH1/2(Γ) → H−1/2(Γ) is compact, the hypersingular boundary integral operator
Dκ is coercive, i.e. with the compact operatorC = Dκ −D0 − I, the G̊arding’s inequality

〈(Dκ + C)v, v〉Γ = 〈(D0 + I)v, v〉Γ ≥ c
eD0
1 ‖v‖2

H1/2(Γ)

is satisfied for allv ∈ H1/2(Γ). The bilinear form for the hypersingular boundary integral for
the Helmholtz equation can be written in the following form, see [2]:

∫

Γ

(Dκu)(x)v(x)dsx =
1
4π

∫

Γ

∫

Γ

eı κ|x−y|

|x− y|
(
curlΓu(y), curlΓv(x)

)
dsydsx

−κ2

∫

Γ

∫

Γ

eı κ|x−y|

|x− y| u(y)v(x)
(
n(x), n(y)

)
dsydsx . (4)
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In addition, we also consider the exterior boundary value problem

−∆u(x)− κ2u(x) = 0 for x ∈ Ωe = R3\Ω , (5)

where we have to add the Sommerfeld radiation condition
∣∣∣∣
( x

|x| ,∇u(x)
)
− ı κu(x)

∣∣∣∣ = O
(

1
|x|2

)
as|x| → ∞. (6)

BOUNDARY VALUE PROBLEMS

We first consider the interior Dirichlet boundary value problem for the Helmholtz equation

−∆u(x)− κ2u(x) = 0 for x ∈ Ω, γ int
0 u(x) = g(x) for x ∈ Γ . (7)

Using the representation formula (2), the solution of the above problem is given by

u(x) =
∫

Γ

u∗κ(x, y)t(y)dsy −
∫

Γ

γ int
1,yu

∗(x, y)g(y)dsy for x ∈ Ω,

wheret = γ int
1 u ∈ H−1/2(Γ) is the unknown conormal derivative ofu onΓ which has to be

determined from the variational problem

〈
Vκt, w

〉
Γ

=
〈(1

2
I +Kκ

)
g, w

〉
Γ

for all w ∈ H−1/2(Γ). (8)

The boundary integral operatorVκ is singular, and, therefore, not invertible, ifκ2 = λ is an
eigenvalue of the Dirichlet eigenvalue problem for the Laplace equation. On the other hand,
if κ2 is not an eigenvalue of the Dirichlet eigenvalue problem, the single layer potentialVκ is
injective and hence, sinceVκ is coercive, also invertible. In addition, we consider the exterior
Neumann boundary value problem

−∆u(x)− κ2u(x) = 0 for x ∈ Ωe, γ int
1 u(x) = g(x) for x ∈ Γ, (9)

where we have to require the Sommerfeld radiation condition (6). Due to the radiation condi-
tion, the exterior Neumann boundary value problem is uniquely solvable. The solution of the
above boundary value problem is given by the representation formula

u(x) = −
∫

Γ

u∗κ(x, y)g(y)dsy +
∫

Γ

γext
1,yu

∗
κ(x, y)γext

0 u(y)dsy for x ∈ Ωe.

The unknown Dirichlet datumu = γext
0 u has to be found from the variational problem

〈
Dκū, v

〉
Γ

= −
〈(1

2
I +K ′

κ

)
g, v

〉
Γ

for all v ∈ H1/2(Γ) . (10)
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Since the hypersingular boundary integral operatorDκ of the exterior Neumann boundary
value problem coincides with the operator which is related to the interior Neumann bound-
ary value problem,Dκ is not invertible whenκ2 is an eigenvalue of the interior Neumann
eigenvalue problem for the Laplace equation. In fact, the variational problem (10) of the di-
rect approach is solvable, but the solution is not unique; we skip the details. Ifκ2 is not an
eigenvalue of the Neumann eigenvalue problem, then the unique solvability of the variational
problem (10) follows, sinceDκ is coercive and injective.

DISCRETISATION

ForN ∈ N, we consider a sequence of boundary element meshes

ΓN =
N⋃

`=1

τ ` . (11)

In the most simplest case, we assume thatΓ is piecewise polyhedral and that each boundary
element mesh (11) consists ofN plane triangular boundary elementsτ`. We assume that all
boundary elementsτ` are uniformly shape regular.

The simplest choice of the trial functions are the piecewise constant basis functions

ψ`(x) =

{
1 for x ∈ τ`,
0 elsewhere

(12)

for ` = 1, . . . , N . The global trial space isS0
h(Γ) = span{ψ` }N

`=1, dimS0
h(Γ) = N . The

following approximation property holds inS0
h(Γ). Letw ∈ Hs

pw(Γ) for somes ∈ [0, 1]. Then
it holds

inf
wh∈S0

h(Γ)
‖w − wh‖Hσ(Γ) ≤ c hs−σ |w|Hs

pw(Γ) (13)

for all σ ∈ [−1, 0]. Furthermore, one can define globally continuous piecewise linear basis
functionsϕj with

ϕj(x) =





1 for x = xj ,

0 for x = xi 6= xj ,

piecewise linear elsewhere.

,

wherexj , j = 1, . . . ,M are the nodes of the discretisation (11). The basis functionsϕj are
used to define the trial spaceS1

h(Γ) = span{ϕj}M
j=1, dimS1

h(Γ) = M. Let v ∈ Hs
pw(Γ)

for somes ∈ [1, 2]. Then there holds

inf
vh∈S1

h(Γ)
‖v − vh‖Hσ(Γ) ≤ c hs−σ |v|Hs

pw(Γ) (14)

for all σ ∈ [−2, 1]. Using a sequence of finite dimensional subspacesS0
h(Γ) spanned by

piecewise constant basis functions, approximate solutions

th =
N∑

`=1

t`ψ` ∈ S0
h(Γ)
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of the interior Dirichlet boundary value problem (7) are obtained from the Galerkin equations

〈
Vκth, ψk

〉
Γ

=
〈(1

2
I +Kκ

)
g, ψk

〉
Γ

for k = 1, . . . , N. (15)

Hence, we find the coefficient vectort ∈ CN as the unique solution of the linear system

Vκ,ht = f

with

Vκ,h[k, `] =
1
4π

∫

τk

∫

τ`

eıκ|x−y|

|x− y| dsydsx , (16)

fk =
1
2

∫

τk

g(x)dsx +
1− ı κ

4π

∫

τk

∫

Γ

eı κ|x−y| (x− y, n(y))
|x− y|3 g(y)dsydsx

for k, ` = 1, . . . , N . To compute an approximate solution of the exterior Neumann problem
(9), we consider the Galerkin equations

〈
Dκũh, ϕi

〉
Γ

=
〈(

− 1
2
I −K ′

κ

)
g, ϕi

〉
Γ

for i = 1, . . . ,M.

Hence, we obtain the coefficient vectorũ ∈ CM as the unique solution of the linear system

Dκ,hũ = f,

with

Dκ,h[i, j] =
1
4π

∫

Γ

∫

Γ

eıκ|x−y|

|x− y| (curlΓϕj(y), curlΓϕi(x))dsydsx (17)

−κ2

∫

Γ

∫

Γ

eıκ|x−y|

|x− y| ϕj(y)ϕi(x)(n(x), n(y))dsydsx ,

fi = −1
2

∫

Γ

g(x)ϕi(x)dsx − 1− ı κ

4π

∫

Γ

ϕi(x)
∫

Γ

eı κ|x−y| (x− y, n(y))
|x− y|3 g(y)dsydsx

for i, j = 1, . . . ,M .

APPROXIMATION OF MATRICES

The matrices involved in BEM are dense, i.e. all their entries do not vanish in general, leading
to an asymptotically quadratic memory requirement for the whole procedure. Fortunately, all
boundary element matrices can be decomposed into a hierarchical system of blocks which
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can be approximated by the use of low rank matrices. The formal definition and description
of hierarchical matrices as well as operations involving those matrices can be found in [3, 4]
and the description of the Adaptive Cross Approximation in [5, 6]. An application of the ACA
to the collocation method for the Helmholtz equation can be found in [7]. Thus, a hierarchical
approximation of large dense matrices arising from some generating function having diagonal
singularity (cf. (3)) consist of three steps: Construction of clusters for variablesx and y,
Finding of possible admissible blocks, Low rank approximation of admissible blocks. A pair
of clusters(Clx, Cly) is admissible if

min
(
diam(Clx), diam(Cly)

)
≤ η dist(Clx, Cly) ,

where0 < η < 1 is a given parameter. In Fig.1 the second level of separation of a simplified
model of an exhaust manifold in a system of clusters is shown on left. The middle plot presents
an admissible cluster pair which will lead to an admissible block of the system matrix. The

Figure 1:Hierarchical matrix

block structure of the Galerkin matrix is shown on the right. The colour of the blocks indicates
the “quality” of the approximation. The light grey colour corresponds to well approximated
blocks while dark grey and especially black colour indicates worse approximation or even
exact computation. For a blockA ∈ Rn×m, the fully pivoted ACA algorithm can be written
in the following form:

Algorithm 1

1. Initialisation R0 = A , S0 = 0 .

2. For i = 0, 1, 2, . . . compute

2.1. pivot element (ki+1, `i+1) = ArgMax |(Ri)k`| ,
2.2. normalising constant γi+1 =

(
(Ri)ki+1`i+1

)−1
,

2.3. new vectors ui+1 = γi+1Rie`i+1 , vi+1 = R>i eki+1 ,

2.4. new residuum Ri+1 = Ri − ui+1v
>
i+1 ,

2.5. new approximation Si+1 = Si + ui+1v
>
i+1 .

See [6] for more details.



ICSV13, July 2-6, 2006, Vienna, Austria

NUMERICAL EXAMPLES

A simplified model of an exhaust manifold as shown in Fig. 1 will be used for the interior
Dirichlet boundary value problem. Its surface containsN = 2264 elements. We perform two
uniform mesh refinements in order to obtain meshes withN = 9056 andN = 36224 ele-
ments, respectively. The analytical solution is taken in the form (3) with y = (0, 0, 0.06)> for
κ = 80. The results of the computations are shown in Tables 1 and 2. The number of boundary

Table 1:ACA approximation of the Galerkin matricesKκ,h andVκ,h

N M ε1 MB(Kκ,h) % MB(Vκ,h) %
2264 1134 10−3 16.62 42.4 11.82 15.1
9056 4530 10−4 137.86 22.0 97.08 7.8

36224 18114 10−5 1046.80 10.5 696.65 3.5

elements is listed in the first column of these tables. The second column contains the number
of nodes, while in the third column of Table 1, the prescribed accuracy for the ACA algorithm
for the approximation of both matricesKκ,h ∈ RN×M andVκ,h ∈ RN×N is given. The fourth
column of this table shows the memory requirements in MByte for the approximate double
layer potential matrixKκ,h. The quality of this approximation in percentage of the original
matrix is listed in the next column. The corresponding values for the single layer potential
matrix V κ, h can be seen in the columns six and seven. The third column of Table 2 shows

Table 2:Accuracy of the Galerkin method, Dirichlet problem
N M Iter Error1 CF1 Error2 CF2

2264 1134 177 3.10 · 10−1 - 8.88 · 10−3 -
9056 4530 208 1.40 · 10−1 2.2 1.08 · 10−3 8.2

36224 18114 244 5.83 · 10−2 2.4 9.27 · 10−5 11.7

the number of iterations required by the GMRES method without preconditioning. The fourth
column displays theL2-error of the Neumann datum, while the next column shows its linear
convergence. The last pair of columns of Table 2 shows the absolute error in a prescribed
inner pointx∗ = (0.145303, 0.1,−0.05)>. Finally, the last column of this table indicates the
cubic (or even better) convergence of this quantity. The surface of the unit sphere will be used
for the exterior Neumann boundary value problem. As an appropriate discretisation ofΓ, we
consider the icosahedron that is uniformly triangulated before being projected onto the cir-
cumscribed unit sphere. On this way we obtain a sequence{ΓN} of almost uniform meshes.
The analytical solution is taken in the form (3) for y = (0.9, 0, 0)> ∈ Ω, i.e. close to the
boundary of the domainΩ andκ = 4. The results of the computations in Tables 3 and 4.
Note that the two last columns of Table 3 show the results of the approximation of an addi-
tional matrixCκ,h required while using the hypersingular operator, i.e. the second summand
in (17). In Table 4, the accuracy obtained for the whole numerical procedure is presented and
the numbers in this table have the same meaning. Note that the convergence of the Galerkin
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Table 3:ACA approximation of the Galerkin matricesKκ,h, Vκ,h, andCκ,h

N M ε1 MB(Kκ,h) % MB(Vκ,h) % MB(Cκ,h) %
80 42 10−2 0.05 100.0 0.05 50.6 0.01 51.2

320 162 10−3 0.75 94.5 0.64 40.8 0.20 50.3
1280 642 10−4 6.88 54.9 5.66 22.7 2.41 38.3
5120 2562 10−5 53.85 26.9 42.91 10.7 19.17 19.1

20480 10242 10−6 379.09 11.8 302.35 4.72 135.47 8.46

Table 4:Accuracy of the Galerkin method, Neumann problem
N M Iter Error1 CF1 Error2 CF2

80 42 16 6.78 · 10−1 – 3.24 · 10−2 –
320 162 23 1.91 · 10−1 3.55 4.99 · 10−3 6.49

1280 642 31 5.81 · 10−2 3.29 1.24 · 10−3 4.02
5120 2562 44 1.42 · 10−2 4.09 2.90 · 10−4 4.28

20480 10242 62 3.27 · 10−3 4.34 7.16 · 10−5 4.04

method for the unknown Dirichlet datum in theL2 norm is, corresponding to the theory, al-
most quadratic. In the inner pointx∗ = (1.1, 0.0, 1.0978)> ∈ Ωe, we now observe quadratic
convergence (7th column) instead of the cubic order obtained for the Dirichlet problem (cf.
Table 2).
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[1] L. Hörmander,The Analysis of Linear Partial Differential Operators I., Springer (1983).
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