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Abstract
This paper presents a segmentation algorithm of a Time-Frequency Representation, which
automatically selects time-frequency patterns containing signal of interest. Considering a de-
terministic non-stationary signal embedded in a white Gaussian noise, we knowthat the real
and imaginary parts of the Short Time Fourier Transform coefficients (STFT) have a Gaussian
distribution. We already proposed an unsupervised segmentation based on the spectrogram,
the squared modulus of the STFT, whose coefficients have a non-central chi-square distribu-
tion. In order to keep simple Gaussian distributions and the phase information,we consider
here only real and imaginary part of the STFT.
We first highlight the difference existing between the variance of these real and imaginary
parts. The ratio of these variances is a function of the nature and length ofthe analysis win-
dow.
Estimated on a cell around each time-frequency location, these variances are used to deter-
mine if a time-frequency location contains deterministic signal or noise only. Given that the
noise variance is unknown, an iterative algorithm is proposed.
In addition of the STFT’s parameters, which are the size and shape of the analysis window, the
overlap between two consecutive windows, and the amount of zero padding, three different
parameters control the segmentation. The most important one is the kurtosis ofthe distribu-
tion, calculated on time-frequency coefficients supposed to contain noise only. It is used to
define a stop criterion of the segmentation and permits the monitoring of the signalpattern
segmentation. The influence of the other parameters on the segmentation result is also dis-
cussed.
This tool is applied to monitor a three-phase AC induction motor on the test benchGOTIX
of the laboratory. Sensors measure vibration, torque and phase tensions and intensities. Seg-
mented patterns provide information about time evolution of the spectral energy, and permit
the tracking of the engine speed.
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INTRODUCTION

In nonstationnary signal analysis, Time-Frequency Representations (TFR) are efficient way
of describing the spectral energy along time. In order to help in these analysis, we already
proposed TFR segmentation algorithms, which automatically select time-frequency patterns
containing signal of interest. A first one is based upon spectrogram ([1], [2]), and have suc-
cessfully been applied to automatic speech recognition ([3], [4]).

More recently, we proposed a second algorithm based directly upon the Short Time
Fourier Transform (STFT) [5]. Theses segmentations are performedby taking as a model of
signal a deterministic signald[m] embedded in a white Gaussian noisen[m]

x[m] = d[m] + n[m]. (1)

d[m] is the signal of interest to be segmented, which contains all the nonstationnary parts
of x[m]. We derive the TFR coefficient probability distributions from this model. At each
iteration, the segmentation algorithm estimates the noise level, and then uses the statistical
features of each time-frequency location to determine either the location contains a deter-
ministic part or noise only. Locations containing deterministic part are then segmented into
patterns.

In this paper, we focus on the segmentation algorithm based on the STFT. Wefirstly
describe the distributions of the real and imaginary coefficients of the STFT, in order to intro-
duce the algorithm in a second section. Three parameters control the segmentation in addition
of the STFT parameters: a threshold on the kurtosis calculated on time-frequency points sup-
posed to contain only noise; a false alarm probability on the local variance distribution of the
locations supposed to contain only noise, which determines at a given iteration what points
may contain deterministic signal; and the proportion of these points to be segmented before
switching to the next iteration.

In the third section Monte Carlo simulations assess the influence of the three parameters
of the segmentation algorithm. We finally apply this method to signals issued from a three-
phase AC induction motor of the test bench GOTIX of the laboratory, in order to track the
engine speed.

REAL AND IMAGINARY PART STFT DISTRIBUTIONS

The STFTXφ[n, k] of a discrete time signalx[m] is the succession of Fourier Transforms of
N windowed overlapping segments centered on the time indexn. Spectral content ofx[m] is
estimated around each instantn. Xφ[n, k] is defined by:

Xφ[n, k] =

n+
Mφ−1

2∑

m=n−
Mφ−1

2

x[m]φ[m − n]e
−2iπk m

Mφ+Z , (2)
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whereφ is theMφ-length window function,Z the zero padding andk the frequency index.
φ[m] is normalized as ∑

φ[m]2 = 1. (3)

Assuming model (1), real partXr
φ[n, k] and imaginary partXi

φ[n, k] are a sum of Gaus-
sian variables, so they have a Gaussian distribution. It’s easy to show that

Xr
φ[n, k] ∼ N

(
Dr

φ[n, k], α[n, k]σ2
)
, (4)

Xi
φ[n, k] ∼ N

(
Di

φ[n, k], (1 − α[n, k])σ2
)
, (5)

whereσ2 is the variance of the noisen[m], Dr
φ[n, k] andDi

φ[n, k] are the real and imaginary
parts of the STFT ofd[m] respectively, andα[n, k] a function fully determined by the STFT
parameters.α[n, k] is approximately equal to 0.5 except for high and low values ofk [5]. We
can define new random variables of constant varianceσ2 such as

Xr
φ[n, k]′ =

Xr
φ[n, k]

√
α[n, k]

, Xi
φ[n, k]′ =

Xi
φ[n, k]

√
1 − α[n, k]

. (6)

In summary, the choice of Gaussian model (1) leads to a simple Gaussian distribution
in the TFR, where the mean depends only on the signal to segmentd[m], and the variance
depends only on the unknown noise varianceσ2.

SEGMENTATION ALGORITHM

The algorithm has to determine either a time-frequency location contains a deterministic part
or not, thus it has to determine if the time-frequency distribution of this location has a non-
zero mean or not. To discriminate these locations, the noise level needs to be estimated. We
show in [5] that estimating the noise level with points containing non-zero mean leads to
an overestimation. We thus propose an iterative process: at each iteration, noise variance is
estimated from non-segmented points, so each estimation leads to a less overestimated value.

At each iteration, we first determine what points called candidates are suitable for being
segmented, and create or rise patterns with these candidates.

Determination of the candidates to the segmentation

To determine which points are supposed to contain a deterministic part, we estimatethe vari-
ance of a(n, k) site on a small cellCn,k of P points centered on this site. Local variance
estimator writes

σ̂2[n, k] =
1

P

∑(
Xr

φ[n, k]′
)2

. (7)

For time-frequency coefficients having a non deterministic part, we derivethatσ̂2[n, k]

has aχ2 distribution

σ̂2
noise only[n, k] ∼

σ2

δ
χ2

δ (8)



F. Millioz and N. Martin

whereδ is the degree of freedom, verifyingδ < P . δ is a deterministic parameter, depending
on the STFT parameters only. The only unknown parameter of this distributionis the noise
levelσ2, which is estimated at each iteration.

In order to choose the candidates to the segmentation, we define then a threshold tσ2

tσ2 / Prob{σ̂2
noise only[n, k] > tσ2} = pfa, (9)

wherepfa is a given false alarm probability.
Candidates to the segmentation are the time-frequency locations whose local variance

is higher than this threshold.

Pattern creation

In order to segment these candidates in spectral patterns, we enter in the propagation sub-
loop of the algorithm. At each sub-iteration, the candidate with the highest variance is chosen
as a ”seed”, associated with a labell. The candidates which are close to the ”seed” in the
time-frequency representation are contaminated with this label, and become new seeds, con-
taminating a new spectral pattern iteratively. Nevertheless, if patterns werealready created at
the previous iteration, these patterns are successively taken as seeds,before considering new
seeds. Each propagation is validated with a test based on the Kolmogorov distance.

The sub-loop is stopped when a given proportionpcand of the candidates is segmented.

End of the algorithm

Time-frequency coefficients are known to have a Gaussian distribution. In order to define a
segmentation stop, a kurtosis criterion is defined as [6]

K =
µ4

(σ2)2
− 3, (10)

whereµ4 is the fourth centered moment. The kurtosis of a Gaussian distribution is knownto
be null. When all(n, k) sites having a deterministic part are segmented, the remaining sites
have a zero mean Gaussian distribution, thus the kurtosis on these points is zero.

When the absolute value of the kurtosis estimated on the non-segmented points islower
than a given thresholdtk, we assume that we have segmented all points having a deterministic
part. There is thus no need to continue and the algorithm is stopped.

PARAMETER INFLUENCE

In order to study the different influences of the three parameterspfa, pcand andtk, we use a
synthetic signal made up of three sinusoids of amplitude 1, over three distincttime supports
and frequencies, and embedded in a white Gaussian noise of known variance. Figure 1 shows
the spectrogram of the signal without noise. The optimal segmentation of this synthetic signal
results in three distinct patterns, one for each sinusoid.
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Figure 1: Spectrogram of the test signal, with-
out additive noise.

Applying the time-frequency segmen-
tation proposed in this paper, the influence of
each parameter is studied for different local
Signal-to-Noise Ratios (SNR) defined as

SNR= 10 log10

(
0.5

σ2

)
, (11)

the amplitude of the sinusoids being 1.
For each SNR, segmentations are per-

formed with 100 realisations of noise. We fo-
cus on the number ofoversegmentationsand
undersegmentations, i.e. the number of seg-
mentation results which displays more and
less than thee patterns respectively.

Influence of the probability of false alarm

As seen in equation (9), this probability of false alarmpfa determines a threshold which set the
time-frequency candidates to the segmentation. At a given iteration, there are less candidates
aspfa decreases. An oversegmentation may appear if there is not enough candidates: a single
pattern will be split in several groups of candidates, each one being ableto create an isolated
pattern. On the contrary, too many candidates can merge different patterns into a single one,
and lead to a undersegmentation.

Figures 2 and 3 show the percentage of oversegmentations and undersegmentations
respectively, for different SNR and different values ofpfa, with pcand = 0.5, tk = 0.1.
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Figure 2: Percentage of oversegmenta-
tions for different SNR andpfa
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Figure 3: Percentage of undersegmenta-
tions for different SNR andpfa
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Influence of the proportion of candidates to be segmented

The parameterpcand is the proportion of candidates to segment at each iteration.pcand en-
hances the effect ofpfa: on the first hand, a value of 1 will create all the possible patterns
among the candidates, and leads to an oversegmentation. On the other hand,a very low value
segments only a few points at each iteration: the growth of existing patterns is privileged over
new pattern creation. The choice ofpcand is thus a compromise between these two extreme
cases.

Figures 4 and 5 show the percentage of oversegmentations and undersegmentations
respectively, for different Signal to Noise Ratios (SNR) and different values ofpcand, with
pfa = 0.01 andtk = 0.1. For this test signal, which has homogeneous patterns well separated
in the TFR, high values ofpcand have no effect.
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Figure 4: Percentage of oversegmenta-
tions for different SNR andpcand
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Figure 5: Percentage of undersegmenta-
tions for different SNR andpcand

Influence of the threshold on the kurtosis

During the segmentation process, the distribution of the non-segmented pointsconverges at
a Gaussian distribution, and its kurtosis converges at zero. When all signal patterns are seg-
mented, if the kurtosis on the non-segmented points is not null, the algorithm creates new
patterns containing noise. We thus need to set a thresholdtk on the kurtosis in order to avoid
oversegmentation. However, a too hightk will stop the algorithm before all signal patterns
are segmented.

Figures 6 and 7 show the percentage of oversegmentations and undersegmentations
respectively, for different Signal to Noise Ratios (SNR) and different values oftk, with pfa =

0.01 andpcand = 0.5.

Choice of a set of parameters

As seen on figure 2 to 7, a generic choice ofpfa = 0.01, pcand = 0.5 andtk = 0.1 results in
a good compromise between few oversegmentations and undersegmentations. Moreover, we
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Figure 6: Percentage of oversegmenta-
tions for different SNR andtk
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Figure 7: Percentage of undersegmenta-
tions for different SNR andtk

notice that higher SNR causes both less oversegmentations and undersegmentations. The next
section shows that another set of parameters allows the algorithm to fit to a wished goal.

APPLICATION

In order to monitor the three-phase AC induction motor of the test bench GOTIX of the
laboratory, the segmentation is applied to a signal provided by an accelerometer located on the
engine shaft, which thus measures its vibrations. Figure 8 and 9 show the spectrogram and a
time-frequency zoom of the measure. The black rectangle in figure 8 defines a time-frequency
region where the segmentation algorithm is applied. Indeed, whether the algorithm takes all
the time-frequency coefficients or only a sample, the coefficients keep the same probability
distributions.

Time (s)

F
re

qu
en

cy
 (

H
z)

Spectrogram

 

 

5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

−80

−60

−40

−20

0

20

40

60

80

Figure 8: Spec-
trogram of the
engine shaft’s vibra-
tions.
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on the black rect-
angle of figure
8.

Time (s)

F
re

qu
en

cy
 (

H
z)

                                  Segmentation result                            Label

 

 

14 16 18 20 22 24

5400

5500

5600

5700

5800

5900

6000

0

0.2

0.4

0.6

0.8

1

Figure 10: Seg-
mentations results.
pfa=10−4, pcand=0.1,
tk=15



F. Millioz and N. Martin

In this application, we are interested to segment only a single harmonic, in order to
recover the engine speed. We thus choose a lowpcand to avoid oversegmentation; a hightk to
stop the algorithm as soon as the main pattern is segmented; and a lowpfa to avoid segmenting
the nearest harmonic in the main pattern. Figure 10 shows the segmentation results forpfa =

10−4, pcand = 0.1, tk = 15.
The pattern obtained has the same wave shape than the command signal which was

manually applied on the torque during the experiments.

CONCLUSIONS

Taking as a model of signal a deterministic part embedded in a white Gaussian noise, this
paper describes the distributions of the STFT’s real and imaginary parts.The distributions
are then used in a segmentation algorithm, controlled by three parameters. Thealgorithm
is applied on a synthetic signal with different realisations of noise, and informs about the
influence of these parameters on the segmentation results. It helps to choose a good set of
parameters to segment a vibration signal of an engine shaft, in order to geta simple pattern
describing the frequency evolution.

A more complete characterisation of the algorithm will consider validations of patterns.
The validation is currently based on a Kolmogorov distance. Works are in progress in this
direction.
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