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Abstract

This paper presents a segmentation algorithm of a Time-Frequency Rept&se which
automatically selects time-frequency patterns containing signal of interasdideoing a de-
terministic non-stationary signal embedded in a white Gaussian noise, wetkabthe real
and imaginary parts of the Short Time Fourier Transform coefficients ($ave a Gaussian
distribution. We already proposed an unsupervised segmentation basled spectrogram,
the squared modulus of the STFT, whose coefficients have a nonlaghitsguare distribu-
tion. In order to keep simple Gaussian distributions and the phase informagoconsider
here only real and imaginary part of the STFT.

We first highlight the difference existing between the variance of thesearel imaginary
parts. The ratio of these variances is a function of the nature and lengib ahalysis win-
dow.

Estimated on a cell around each time-frequency location, these variatcaseal to deter-
mine if a time-frequency location contains deterministic signal or noise onlgrivat the
noise variance is unknown, an iterative algorithm is proposed.

In addition of the STFT’s parameters, which are the size and shape afahess window, the
overlap between two consecutive windows, and the amount of zerongadhree different
parameters control the segmentation. The most important one is the kurttisésdi$tribu-
tion, calculated on time-frequency coefficients supposed to contain noigeltas used to
define a stop criterion of the segmentation and permits the monitoring of the pigpten
segmentation. The influence of the other parameters on the segmentatioisrago dis-
cussed.

This tool is applied to monitor a three-phase AC induction motor on the test @@dhXx
of the laboratory. Sensors measure vibration, torque and phase ®agidintensities. Seg-
mented patterns provide information about time evolution of the spectralye@erg permit
the tracking of the engine speed.



F. Millioz and N. Martin

INTRODUCTION

In nonstationnary signal analysis, Time-Frequency Representatibiid) @re efficient way
of describing the spectral energy along time. In order to help in thesesisialye already
proposed TFR segmentation algorithms, which automatically select time-fregpatierns
containing signal of interest. A first one is based upon spectrogran{Z]}, and have suc-
cessfully been applied to automatic speech recognition ([3], [4]).
More recently, we proposed a second algorithm based directly uponhibre Bme

Fourier Transform (STFT) [5]. Theses segmentations are perfoboyp¢aking as a model of
signal a deterministic signadlm] embedded in a white Gaussian noige:|

x[m| = d[m] + n[m]. 1)

d[m] is the signal of interest to be segmented, which contains all the nonstatopas
of z[m]. We derive the TFR coefficient probability distributions from this model. a¢re
iteration, the segmentation algorithm estimates the noise level, and then usegistieadta
features of each time-frequency location to determine either the locationimoataleter-
ministic part or noise only. Locations containing deterministic part are themesstgd into
patterns.

In this paper, we focus on the segmentation algorithm based on the STHirsWe
describe the distributions of the real and imaginary coefficients of the Siefder to intro-
duce the algorithm in a second section. Three parameters control thergatiorein addition
of the STFT parameters: a threshold on the kurtosis calculated on timesfregpoints sup-
posed to contain only noise; a false alarm probability on the local varidegédtion of the
locations supposed to contain only noise, which determines at a given itevaiat points
may contain deterministic signal; and the proportion of these points to be seghiefitee
switching to the next iteration.

In the third section Monte Carlo simulations assess the influence of the thegegiars
of the segmentation algorithm. We finally apply this method to signals issued froreex th
phase AC induction motor of the test bench GOTIX of the laboratory, inrdmé&ack the
engine speed.

REAL AND IMAGINARY PART STFT DISTRIBUTIONS

The STFTX[n, k] of a discrete time signal[m] is the succession of Fourier Transforms of
N windowed overlapping segments centered on the time ind®pectral content of [m] is
estimated around each instantX4[n, k] is defined by:
nt ]VI¢;—1 o
Xpn, k] = Z z[m)p[m — nle Mz 2)

NI¢71
2

m=n—
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where¢ is the My-length window function/Z the zero padding ank the frequency index.
¢[m] is normalized as

> smPP=1. ©)
Assuming model (1), real pai[n, k] and imaginary parX; [n, k] are a sum of Gaus-
sian variables, so they have a Gaussian distribution. It's easy to show that

Xjn, k] ~ N (Dj[n, k], on, k|o?) (4)

Xn, k] ~ N (Dj[n, k], (1 — an, k])o?) (5)

whereo? is the variance of the noisgm], Di[n, k] andDé)[n, k| are the real and imaginary
parts of the STFT ofl[m] respectively, and:[n, k| a function fully determined by the STFT
parametersu|n, k] is approximately equal to 0.5 except for high and low valueks [&]. We
can define new random variables of constant variaricguch as

. X}[n, k] X} [n, k]
¢[n, ] \/m *}a 7\/T[n,k]

In summary, the choice of Gaussian model (1) leads to a simple Gaussiarudiistrib
in the TFR, where the mean depends only on the signal to segifteftand the variance
depends only on the unknown noise varianée

Xé[n, k) = (6)

SEGMENTATION ALGORITHM

The algorithm has to determine either a time-frequency location contains andestic part
or not, thus it has to determine if the time-frequency distribution of this locatisrahzon-
zero mean or not. To discriminate these locations, the noise level needsdtirbated. We
show in [5] that estimating the noise level with points containing non-zero meals l®
an overestimation. We thus propose an iterative process: at each iteratiee variance is
estimated from non-segmented points, so each estimation leads to a lessroadeedsvalue.

At each iteration, we first determine what points called candidates arelsditabeing
segmented, and create or rise patterns with these candidates.

Determination of the candidates to the segmentation

To determine which points are supposed to contain a deterministic part, we edtimatei-
ance of a(n, k) site on a small cel(’;, ;, of P points centered on this site. Local variance

estimator writes )

—~ . 9
o2[n. k] = 5 > (Xpm k). 7)
For time-frequency coefficients having a non deterministic part, we dma@[n, k]
has ay? distribution
—~ o2
o2 noise onl)lm k] ~ FX% (8)
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whered is the degree of freedom, verifyifg< P. J is a deterministic parameter, depending
on the STFT parameters only. The only unknown parameter of this distribigtiie noise
level 02, which is estimated at each iteration.

In order to choose the candidates to the segmentation, we define thenalithtes

te2 | Prob{o?noise onl)[nv k] >ty2} = Pfa, 9

wherepy, is a given false alarm probability.
Candidates to the segmentation are the time-frequency locations whosedonaate
is higher than this threshold.

Pattern creation

In order to segment these candidates in spectral patterns, we enter iropagation sub-
loop of the algorithm. At each sub-iteration, the candidate with the highdainearis chosen
as a "seed”, associated with a laBelThe candidates which are close to the "seed” in the
time-frequency representation are contaminated with this label, and becons=eds, con-
taminating a new spectral pattern iteratively. Nevertheless, if patternsalveealy created at
the previous iteration, these patterns are successively taken astsefeds,considering new
seeds. Each propagation is validated with a test based on the Kolmogadsowdis
The sub-loop is stopped when a given proporigl, of the candidates is segmented.

End of the algorithm

Time-frequency coefficients are known to have a Gaussian distributicorder to define a
segmentation stop, a kurtosis criterion is defined as [6]

K=t _3 (10)

wherepy is the fourth centered moment. The kurtosis of a Gaussian distribution is kioown
be null. When all(n, k) sites having a deterministic part are segmented, the remaining sites
have a zero mean Gaussian distribution, thus the kurtosis on these points is ze

When the absolute value of the kurtosis estimated on the non-segmented poines is
than a given thresholg,, we assume that we have segmented all points having a deterministic
part. There is thus no need to continue and the algorithm is stopped.

PARAMETER INFLUENCE

In order to study the different influences of the three parametgrsp...q andt;, we use a
synthetic signal made up of three sinusoids of amplitude 1, over three distirecsupports
and frequencies, and embedded in a white Gaussian noise of knowmceartagure 1 shows
the spectrogram of the signal without noise. The optimal segmentation oyttiisesic signal

results in three distinct patterns, one for each sinusoid.



ICSV13, July 2-6, 2006, Vienna, Austria

Frequency

Spectrogram of the test signal

1000 2000 3000 4000 5000 6000 7000 8000
Time

Applying the time-frequency segmen-
tation proposed in this paper, the influence of
each parameter is studied for different local
Signal-to-Noise Ratios (SNR) defined as

=)
the amplitude of the sinusoids being 1.
For each SNR, segmentations are per-
formed with 100 realisations of noise. We fo-
cus on the number ajversegmentationsnd

Figure 1: Spectrogram of the test signal, withdndersegmentations.e. the number of seg-
out additive noise.

Influence of the probability of false alarm

mentation results which displays more and
less than thee patterns respectively.

As seen in equation (9), this probability of false alarp determines a threshold which set the
time-frequency candidates to the segmentation. At a given iteration, treelesarcandidates
aspy, decreases. An oversegmentation may appear if there is not enougtiataada single
pattern will be split in several groups of candidates, each one beindgcabieate an isolated
pattern. On the contrary, too many candidates can merge different gatttora single one,
and lead to a undersegmentation.

Figures 2 and 3 show the percentage of oversegmentations and gmiensations
respectively, for different SNR and different valuegf, with p.,,q = 0.5, t, = 0.1.
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Figure 2: Percentage of oversegmenta-
tions for different SNR angl,
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Figure 3: Percentage of undersegmenta-
tions for different SNR angl,
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Influence of the proportion of candidates to be segmented

The parametep...nq IS the proportion of candidates to segment at each iteragtigpy en-
hances the effect qf;,: on the first hand, a value of 1 will create all the possible patterns
among the candidates, and leads to an oversegmentation. On the othex arydpw value
segments only a few points at each iteration: the growth of existing patterrigiisged over
new pattern creation. The choice @f,,.4 is thus a compromise between these two extreme
cases.

Figures 4 and 5 show the percentage of oversegmentations and w@mndensations
respectively, for different Signal to Noise Ratios (SNR) and differetues ofp.q.q, With
pra = 0.01 andt;, = 0.1. For this test signal, which has homogeneous patterns well separated
in the TFR, high values aj..,,q have no effect.
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Figure 4. Percentage of oversegmenta-  Figure 5: Percentage of undersegmenta-
tions for different SNR angl.,.q tions for different SNR ang..,,4

Influence of the threshold on the kurtosis

During the segmentation process, the distribution of the non-segmented painerges at
a Gaussian distribution, and its kurtosis converges at zero. When &l gigtierns are seg-
mented, if the kurtosis on the non-segmented points is not null, the algorittatesreew
patterns containing noise. We thus need to set a threghald the kurtosis in order to avoid
oversegmentation. However, a too highwill stop the algorithm before all signal patterns
are segmented.

Figures 6 and 7 show the percentage of oversegmentations and wmndensations
respectively, for different Signal to Noise Ratios (SNR) and diffevafues oft;, with p;, =
0.01 andpegng = 0.5.

Choice of a set of parameters

As seen on figure 2 to 7, a generic choice@f = 0.01, peanqg = 0.5 andt;, = 0.1 results in
a good compromise between few oversegmentations and undersegmentdticever, we
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Figure 6: Percentage of oversegmenta- Figure 7: Percentage of undersegmenta-
tions for different SNR antj, tions for different SNR ant},

notice that higher SNR causes both less oversegmentations and untEmsgpns. The next
section shows that another set of parameters allows the algorithm to fit thhed\gsal.

APPLICATION

In order to monitor the three-phase AC induction motor of the test bench X0fthe
laboratory, the segmentation is applied to a signal provided by an acceterdooated on the
engine shaft, which thus measures its vibrations. Figure 8 and 9 showatiecgpam and a
time-frequency zoom of the measure. The black rectangle in figure &defitime-frequency
region where the segmentation algorithm is applied. Indeed, whether thélaigtakes all
the time-frequency coefficients or only a sample, the coefficients keemthe probability
distributions.
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In this application, we are interested to segment only a single harmonic, in torde
recover the engine speed. We thus choose algyy; to avoid oversegmentation; a highto
stop the algorithm as soon as the main pattern is segmented; ang a ltmavoid segmenting
the nearest harmonic in the main pattern. Figure 10 shows the segmentatitéfoe ;, =
107, peana = 0.1, tj, = 15.

The pattern obtained has the same wave shape than the command signal agich w

manually applied on the torque during the experiments.

CONCLUSIONS

Taking as a model of signal a deterministic part embedded in a white Gauss& this
paper describes the distributions of the STFT’s real and imaginary gédmésdistributions
are then used in a segmentation algorithm, controlled by three parameteralgbhighm
is applied on a synthetic signal with different realisations of noise, anadnms@bout the
influence of these parameters on the segmentation results. It helps t® @gosd set of
parameters to segment a vibration signal of an engine shaft, in order tosifaple pattern
describing the frequency evolution.

A more complete characterisation of the algorithm will consider validationstténpe.
The validation is currently based on a Kolmogorov distance. Works areogress in this
direction.
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