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Abstract 
A method for the computation of real normal modes from complex eigenvectors is described 
in this paper. The method is based on the exact eigensystem equations, which commonly 
cannot be used due the problem of modal truncation. A solution to this problem is achieved 
by a reduction transformation. The theory of the method is described in detail. With the 
purpose to demonstrate the applicability, a simulated vibration system is employed. In 
addition, experimental data from modal identification tests on an aircraft are used. It can be 
shown that the method is able to transform identified complex eigenvectors into real normal 
modes with good reliability and accuracy. 

INTRODUCTION 

Analytical models of large aerospace structures are usually set-up with the Finite 
Element Method and comprise in most cases only mass and stiffness properties. With 
the purpose to validate and update the Finite Element models, modal identification 
tests are performed. The results of modal identification tests are mainly the modal 
parameters like eigenfrequencies, modal damping values, modal masses, and 
(complex) mode shapes. Since the damping characteristics are usually not analytically 
modelled with Finite Elements, the eigenvalue analysis with the analytical Finite 
Element models delivers undamped eigenfrequencies and real normal modes. For the 
adequate correlation of experimental and analytical data it is required that the 
experimental data is in the same format, i.e. that undamped eigenfrequencies and real 
normal modes are available. 

Real normal modes and undamped eigenfrequencies of a tested 
elastomechanical structure can be obtained in principle on three different ways. The 
first way is to directly measure the real normal modes and undamped 
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eigenfrequencies. In this case the Phase Resonance Method has to be applied, see e.g. 
[1]. The Phase Resonance Method uses harmonic excitation and an adjusted exciter 
force vector for each mode. If the related eigenfrequency is tuned, the inertia forces 
are in equilibrium with the elastic forces and the excitation forces compensate for the 
damping of the structure. Eigenfrequencies and real normal modes can directly be 
measured. However, the application of the Phase Resonance Method is time 
consuming and thus concepts for combining the Phase Resonance Method with Phase 
Separation Techniques have been developed [1]. 

A second way of obtaining real normal modes is to apply special Phase 
Separation Techniques to measured data. In [2] a time domain method is proposed 
that identifies the transition matrix [ ]A  from free decay vibrations. Next, the matrix 
product 1[ ] [ ]M K−  is extracted from [ ]A  and the solution of the eigenproblem 
 
 1 2[ ] [ ]{ } { } ,φ ω φ− =r r rM K  (1) 
 
w
 

hich is equivalent to 

  (2) ( )2[ ] [ ] { } {0}ω φ− + =r M K r
 
delivers the undamped eigenfrequencies rω  and real normal modes { }φ r . In [3] the 
method is modified and further developed by performing a principal component 
analysis. A similar way for the determination of real normal modes can be achieved 
by applying frequency domain Phase Separation Techniques. The method ISSPA 
(Identification of Structural System Parameters) [4] is also able to estimate the matrix 
product 1[ ] [ ]M K−  and to compute real normal modes according to eq. (2). In the 
same way the FDPI (Frequency Domain Direct Parameter Identification) approach [5] 
can be utilized. Reference [6] proposes this way for the determination of real normal 
modes. In addition, it is proposed here to estimate the mode shapes from a least 
squares approximation technique when the eigenvalues rλ  are already known from 
applying e.g. the polyreference time domain method. If the mode shape coefficients 
are forced to be purely real during the least squares approximation the result are real 
normal modes. 

A third way of obtaining real normal modes is to use a set of complex modes 
which already exists, because it has been previously identified with a Phase 
Separation Technique. Then it is required to compute real normal modes from the 
complex eigenvalues and eigenvectors. In this class several methods with different 
degree of sophistication have been proposed. First, so-called simple methods can be 
used (see e.g. [7] and [8]), where the eigenvectors are scaled in an appropriate manner 
and the modulus of each eigenvector component is used. The sign is adjusted to or 

 depending on the phase angle of each complex eigenvector component. More 
elaborated and highly sophisticated methods can be found in the literature [9-14] and 
are briefly discussed in the following. Reference [9] presents a method to maximise 
the MAC correlation between original and transformed mode shapes and uses it for 
the computation of real normal modes. The method is generalized in Ref. [10]. The 
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publication [11] introduces a linear transformation between the modal matrices with 
complex modes and real normal modes. Paper [12] proposes a method which is based 
on orthogonality constraints. Reference [13] also deals with a linear transformation 
from complex modes to real normal modes and additionally considers the background 
and consequences of non-proportional damping. Reference [14] is a comprehensive 
work on the topic. In principle, the proposed method computes first matrices [ ]M  and 

 from identified complex modes [ ]K { }ψ
r
 and then computes the real normal modes 

{ }φ r
 from eq. (2). 
The present article describes a method that is based on a previous paper of the 

author [15]. The method uses exact eigensystem equations for the computation from 
complex eigenvectors to real normal modes and solves the problem of modal 
truncation by a reduction transformation. The method appears clear and easy to 
implement. The theory of the method is described in the following section. 

THEORETICAL BACKGROUND 

Basic Equations for Real Normal Modes 

The eigensystem equations of a linear, viscously damped elastomechanical structure 
are 
 
 { } { } { } { }2[ ] [ ] [ ] 0λ ψ λ ψ ψ+ +r rr r r

M C K = , (3) 
 
with [ ], [ ]M C  and [  as the physical mass, damping and stiffness matrices. For 
vibratory elastomechanical structures with a general damping matrix [  the 
eigenvalues 

]K
]C

λr  and eigenvectors { }ψ
r
 appear in complex conjugate pairs. In most 

cases, the eigenvectors { }ψ
r
 cannot be scaled in a way that their components are 

purely real. 
Multiplication of eq. (3) with 1[ ]−M  and rearrangement yields 

 

 
{ }
{ } { }1 1 2[ ] [ ] [ ] [ ]
ψ

λ ψ
λ ψ

− − ⎧ ⎫⎪ ⎪⎡ ⎤ ⋅ = −⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭
r

r r
r r

M C M K . (4) 

 
This equation holds valid for each pair of eigenvector and eigenvalue and can thus be 
expanded to include all eigenvectors and eigenvalues. Eq. (4) can then be solved for 
the mass modified stiffness matrix [ ]1[ ]−M K . 

The eigensolution with the mass modified stiffness matrix 
 
 { } { }1[ ] [ ] 2φ ω φ− = rr

M K
r
 (5) 

delivers the desired real normal modes { }φ r
 and undamped eigenfrequencies ωr . 
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Modal Truncation 

The problem which remains to be solved consists in the modal truncation. The modal 
identification usually delivers an incomplete modal model where not all modes are 
identified. Or with other words: the number of sensors on the structure, which equals 
the length of the eigenvectors { }ψ

r
, is often larger than  (the number of identified 

modes). A solution of this problem can be achieved by a reduction transformation that 
reduces the number of eigenvector components. For this reduction transformation a 
matrix [  can be employed which contains some kind of mode shape information. 
Applying a singular value decomposition (see e.g. [16]) to the matrix [  it follows 

n

]X
]X

 
  [ , (6) ] [ ][ ][ ]= TX T S V
 
where  already represents the transformation matrix. For matrix [  it is 
proposed here to use the real parts of the complex eigenvectors 

[ ]T ]X

 
 { } { } { }1 2

[ ] ψ ψ ψ⎡= ⎣ n
X Re Re Re ⎤⎦ . (7) 

 
Concerning the scaling of the eigenvectors different variants are possible. They 

can be scaled in a way that the maximum component is 1 and, if appropriate, 
subsequently rotated in the complex plane in order to minimize the phase deviation. 

Instead of the real parts, it is also possible to e.g. utilize the modulus of the 
eigenvector components with adjusted signs for assembling matrix [ ] . X

Procedure for Computing Real Normal Modes 

Using the transformation matrix [  defined above, the complex eigenvectors {]T }ψ
r
 

re transformed from physical coordinates to reduced coordinates by a
 
 { } [ ]{ }ψ ψ=

r
T

r
. (8) 

 
The solution of the equation set (with eigenvectors { }ψ

r
 in reduced coordinates) 

 

 

{ } { } { }
{ } { } { }

{ } { } { }

1 1 1 2 2

1 2 21 2 2

2 2 2
1 2 21 2 2

[ ] [ ] [ ] [ ]

.

n

n n

n n

M K M C
ψ ψ ψ

λ ψ λ ψ λ ψ

λ ψ λ ψ λ ψ

− − ⎡ ⎤
⎡ ⎤ ⋅ =⎢ ⎥⎣ ⎦

⎣ ⎦

⎡ ⎤= − ⎣ ⎦

 (9) 

 
delivers the mass modified stiffness matrix 1[ ]− ⎡ ⎤⎣ ⎦M K . The undamped 

eigenfrequencies ωr  and real normal modes { }φ r
 are obtained from the eigensolution 

 { } { }1[ ] [ ] 2φ ω φ− = rr
M K

r
. (10) 

 
Finally, the computed real normal modes are transformed back to physical 
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coordinates by employing the orthogonality of the transformation matrix [ ]  T
 
 { } [ ] { }φ φ= T

r r
T . (11) 

ANALYTICAL EXAMPLE 

In order to check the method it was first applied to an analytical vibration system with 
11 degrees of freedom. The damping values were selected in a way that the mode 
shapes exhibit a high level of complexity. Table 1 shows in the first three columns the 
damped eigenfrequencies rf , the damping values ζ r , and the mean phase deviation 
(MPD), i.e. the mean phase angle of the complex eigenvector components. The next 
two columns list the undamped eigenfrequencies 0rf  and the MPD of the real normal 
modes (which is of course 0). The last column shows the MAC (Modal Assurance 
Criterion) correlation between the complex modes and the real normal modes. It can 
be seen that several complex modes are significantly different from the real normal 
modes. 

The utilization of all 11 complex eigenvectors in the proposed computational 
procedure delivers the exact values for all real normal modes. Next, several sets with 
fewer complex modes were used for the computation of real normal modes. The 
results are listed in Table 2. For a given set of complex modes the maximum error in 
frequency and the minimum MAC correlation is listed. It shows that the agreement of 
computed and exact normal modes is very high in all cases, even if only very few 
complex modes are used. Figure 1 shows as an example for modes 5 and 6 the 
computed real normal modes { }φ r

 (solid lines) and the complex modes { }ψ
r
 

(modulus with adjusted signs as dashed lines). Although there is a large difference 
between the modes, the procedure is able to compute nearly the exact real normal 
modes (MAC correlation better then 99.9 %). 
 
 

------------------------------------------------------------------------ 
|     |          Complex Modes         |       Real Modes    |   Corr  | 
|   # |         fqr      zetar     MPD |        fq0r     MPD |    MAC  | 
------------------------------------------------------------------------ 
|   1 |    2.743 Hz    1.948 %     9 ° |    2.737 Hz     0 ° |    97 % | 
|   2 |    2.947 Hz    2.333 %    10 ° |    2.954 Hz     0 ° |    97 % | 
|   3 |    7.361 Hz    4.790 %    35 ° |    7.245 Hz     0 ° |    79 % | 
|   4 |    7.666 Hz    6.571 %    38 ° |    7.808 Hz     0 ° |    76 % | 
|   5 |   11.744 Hz    4.808 %    34 ° |   11.474 Hz     0 ° |    58 % | 
|   6 |   11.766 Hz   13.241 %    35 ° |   12.135 Hz     0 ° |    55 % | 
|   7 |   15.133 Hz   18.105 %    28 ° |   15.006 Hz     0 ° |    46 % | 
|   8 |   15.262 Hz    5.549 %    29 ° |   15.626 Hz     0 ° |    45 % | 
|   9 |   18.540 Hz   22.328 %    24 ° |   18.489 Hz     0 ° |    46 % | 
|  10 |   18.798 Hz    6.844 %    21 ° |   19.321 Hz     0 ° |    44 % | 
|  11 |   27.943 Hz   15.863 %    22 ° |   28.577 Hz     0 ° |    97 % | 
------------------------------------------------------------------------  

Table 1 – Data of the analytical vibration system 
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Used Complex Modes Max. Error in Frequency Min. MAC Value 
3,4,5,6,7,8,9,10 0.14 % 99.7 % 

5,6,7,8,9,10 0.56 % 99.7 % 
5,6,7,8 0.38 % 99.7 % 

7,8,9,10 0.57 % 99.7 % 
5,6 0.22 % 99.9 % 
7,8 0.37 % 99.7 % 

9,10 0.53 % 99.6 %  
Table 2 – Results of real normal mode computation 

 
 
 
 
 
 
 
 
 
 
 
  

Figure 1 – Computed real normal modes { }r
φ  and complex eigenvectors { }r

ψ  

EXPERIMENTAL EXAMPLE 

The method for computing real normal modes from complex eigenvectors has already 
been applied to experimental modal data of different aircraft. Figure 2 shows a typical 
Ground Vibration Test on a sailplane. During the tests usually several configurations 
with different mass loading are tested The goal is mainly the identification of a 
complete set of modal parameters up to 60 Hz. For this purpose the Phase Resonance 
Method is often applied in the first configuration. The other configurations are then 
tested with a sine sweep excitation and the modes are extracted from the measured 
FRFs with a frequency domain Phase Separation Technique. The identified complex 
eigenvectors need then to be transformed to real normal modes. 

Table 3 lists, as an example, typical results of a GVT on a sailplane in one 
configuration. Some complex modes show a rather high mean phase deviation. Here, 
the complete data set with 22 modes and 80 eigenvector components was transformed 
from complex to real normal modes in one single computational run. The 
transformation of the complete data set was possible without any difficulties in this 
case. However, for other configurations it is sometimes required to split the entire 
frequency range into two or more parts. In general, it turned out that the method is 
able to compute real normal modes with good reliability and accuracy. 
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Figure 2 – Ground Vibration Test on a sailplane 

------------------------------------------------------------------------ 
|     |          Complex Modes         |       Real Modes    |   Corr  | 
|   # |         fqr      zetar     MPD |        fq0r     MPD |    MAC  | 
------------------------------------------------------------------------ 
|   1 |    3.371 Hz    0.246 %     1 ° |    3.371 Hz     0 ° |   100 % | 
|   2 |    5.610 Hz    0.753 %     3 ° |    5.608 Hz     0 ° |   100 % | 
|   3 |    7.214 Hz    4.132 %     7 ° |    7.218 Hz     0 ° |   100 % | 
|   4 |    8.154 Hz    3.873 %    23 ° |    8.089 Hz     0 ° |    98 % | 
|   5 |    8.632 Hz    1.974 %    42 ° |    8.714 Hz     0 ° |    81 % | 
|   6 |   11.343 Hz    0.568 %     1 ° |   11.343 Hz     0 ° |   100 % | 
|   7 |   13.309 Hz    0.541 %     2 ° |   13.310 Hz     0 ° |   100 % | 
|   8 |   14.232 Hz    1.888 %     7 ° |   14.237 Hz     0 ° |   100 % | 
|   9 |   15.604 Hz    2.632 %     7 ° |   15.607 Hz     0 ° |   100 % | 
|  10 |   20.292 Hz    1.936 %    11 ° |   20.288 Hz     0 ° |    98 % | 
|  11 |   21.526 Hz    1.419 %     7 ° |   21.546 Hz     0 ° |    99 % | 
|  12 |   22.961 Hz    1.870 %     9 ° |   22.968 Hz     0 ° |    99 % | 
|  13 |   25.440 Hz    0.656 %     7 ° |   25.440 Hz     0 ° |   100 % | 
|  14 |   26.318 Hz    2.440 %     9 ° |   26.324 Hz     0 ° |    99 % | 
|  15 |   29.262 Hz    2.480 %    15 ° |   29.255 Hz     0 ° |    98 % | 
|  16 |   31.251 Hz    1.810 %     6 ° |   31.255 Hz     0 ° |   100 % | 
|  17 |   32.849 Hz    1.497 %     8 ° |   32.831 Hz     0 ° |    99 % | 
|  18 |   36.680 Hz    1.397 %    14 ° |   36.649 Hz     0 ° |    99 % | 
|  19 |   38.515 Hz    1.486 %     7 ° |   38.528 Hz     0 ° |    99 % | 
|  20 |   39.481 Hz    1.704 %    15 ° |   39.542 Hz     0 ° |    98 % | 
|  21 |   44.340 Hz    0.790 %     3 ° |   44.341 Hz     0 ° |   100 % | 
|  22 |   58.742 Hz    1.390 %    19 ° |   58.746 Hz     0 ° |   100 % | 
------------------------------------------------------------------------ 

 
Table 3 – Example for experimental data 

SUMMARY AND CONCLUSIONS 

The paper first reviews existing methods for the determination of real normal modes. 
Then a method for the computation of real normal modes from identified complex 
eigenvectors is described. The theoretical background is explained and the method is 
illustrated by an analytical example. Test data from a GVT on a sailplane shows the 
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application of the method in practice. 
It is intended to implement the method in a software environment which 

enables to read and write mode shapes in commonly used data formats. In addition 
and as an alternative, it is planned to also implement some of the quite simple 
methods for the transformation from complex to real normal modes. 
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