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Abstract 
This paper describes the investigation of the propagation wave speed and wave attenuation in 
viscoelastic fluid-filled pipes. Relatively predictable for metal pipes, these are largely 
unknown for plastic pipes, since they depend on the pipe wall properties. Wave number 
measurements, encompassing both wave speed and wave attenuation, were carried out on 
different water-filled plastic pipes using three hydrophones. The frequency dependent wave 
speed and attenuation were calculated from the transfer function between three pressure 
measurements. Experimental results for different pipe wall materials, particularly those with 
applications in water supply installations, are presented. The purpose of this paper is to 
present a method of analysis in the frequency domain that can be used to determine the 
acoustical properties of fluid-filled plastic pipes. 

INTRODUCTION 

The complex wave speed (complex-valued and frequency-dependent) is used in the 
standard impedance or transfer matrix method [1] and an impulse response method 
has been proposed to compute the non-periodic transients [2]. A similar method 
applies the concept of transmission loss instead of the concept of wall impedance [3]. 
The Poisson-coupled vibrations in an elastic pipe and the fluid in the pipe could 
potentially yield transfer matrix relations relating the amplitude quantities of motion 
transmitted through a length of pipe [4]. The amplitude relation is good for modal 
analysis and useful for deriving the transmission loss matrix of pipe, but is not 
suitable for complete transmission of the sound pressure wave (amplitude and phase). 
An extended method, which uses the static mechanical properties and frequency-
dependent mechanical properties of the pipe wall, has been proposed [5].  

In the presented work, a transfer function method is proposed. Compared to the 
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transfer matrix method, the transfer function method is based on an analysis of the 
transfer function relationships between three sound pressure measurements in a pipe 
[6, 7]. We show that it is possible to calculate the wave speed and attenuation from 
the transfer function using simple wave propagation formulations. 

WAVE PROPAGATION 

The acoustic wave number of plane waves propagating in a pipe with unknown 
termination is determined from pressure measurements at three separate locations 
along the pipe. If we consider a fluid-filled pipe of arbitrary length and a plane 
acoustic pressure excitation P0 applied through fluid on one side of the pipe: 
 
 ( ) tjeAP ωω ⋅= 00  (1) 
 
where A0 is the pressure amplitude, 1−=j , ω is the angular frequency and t is 
time. The pressure at any point along the pipe can be represented by two waves 
traveling in opposite directions. The wave number is defined as k = ω/c or k = 2π/λ, 
where c and λ represent wave speed and wavelength. Omitting the time dependence 
for convenience, the pressure P at an arbitrary position x is defined as: 
 
 ( ) jkxjkx eBeAxP ⋅+⋅= −,ω  (2) 
 
If we consider a pipe along which three pressure transducers are mounted and are equally 
spaced (as shown in Fig. 1), such that Δx1 = Δx2 = Δx and x2 = 0. From Eq. (2) it follows that: 
 
                      xjkxjk eBeAP Δ−Δ ⋅+⋅=1 ;     BAP +=2 ;     xjkxjk eBeAP ΔΔ− ⋅+⋅=3  (3) 
 
 
 
 
 
 
 
 

Figure 1 –  Locations of the pressure transducers along the pipe. 
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where H12 is the pressure transfer function between points 1 and 2, defined as P1/P2 , 
and H32 as P3/P2. The wave number (the last term in Eq. (4)) is thus defined from the 
three pressures as: 
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In the case of a viscoelastic pipe, the wave number is complex and encompasses both 
the wave speed and wave attenuation. Therefore, one can introduce the complex form 
of the wave number as:  
 
 ir kjkk ⋅+=  (6) 
 
where kr is the real part of the wave number and ki is the imaginary part of the wave 
number, referred to as the frequency-dependent attenuation coefficient α(f) = Im(k). 
Substitution of the complex wave number into Eq. (2) yields the following explicit 
expression for wave amplitude: 
 
 ( ) xjkxxjkx rr eeBeeAxP ⋅⋅+⋅⋅= −−− ααω,  (7) 
 
and for the corresponding transfer function: 
 
 ( ) xkj eexH r Δ−− ⋅=Δ αωωω,  (8) 
 
With this expression for the pressure, Eq. (4) could be rewritten as: 
 

 ( ) ( ) ( ) ( ) ( )xxkjxxkHH Δ⋅⋅Δ⋅⋅−Δ⋅⋅Δ⋅=+ αα sinhsincoshcos
2
1

3212  (9) 

 
In this case, when the viscoelasticity of the pipe wall is included in wave equation, 
the wave number is defined as k = ω/cp (or Re(k) = ω/cp in the case of the complex 
wave number), where cp is the phase velocity. The experimentally determined wave 
number (or wave speed) and attenuation coefficient can be calculated from Eq. (9) 
using the measured transfer function.  

VERIFICATION OF THE METHOD 

The effectiveness of the proposed method presented here is assessed for different pipe 
materials. All pipes had a nominal diameter of 1” and were designed for use in water 
supply installations. To clarify the impact of the viscoelastic properties of the pipe 
material on wave propagation, the operating conditions, measurements, and 
calculation procedures were kept the same for all tests. 
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Experimental set-up and procedure 

The hydraulic circuit for measuring the transfer function consisted of straight pipe 
sections, 2 m in length each, connected to a supply installation. The hydrophones 
were mounted at the each end of the section. In the tests, water at 9 °C was used as 
the fluid (c = 1482 m/s). The measured section was suspended on foam pads at a 
certain angle, ensuring that no air bubbles were trapped within the measured sections. 
Two different pipe materials were examined in the experiment: the pipe made of 
polybutylene pipe has a wall thickness 3 mm and the polyethylene (PE) pipe had a 
wall thickness of 4.4 mm. Signals taken from the hydrophones (Brüel&Kjær 8103) 
were simultaneously fed via charge amplifiers (Brüel&Kjær 2626) into the dual 
channel FFT analyzer (Brüel&Kjær 2032). The FFT analyzer sampling frequency 
was 65 kHz, while the chosen frequency span of 6.4 kHz included all relevant 
frequency information. The sampling interval was 61 μs (8 Hz) and the record length 
was 125 ms. The measurement was conducted by obtaining 100 spectral averages of 
the transfer function between the two hydrophones using the signal analyzer.  

EXPERIMENTAL RESULTS 

The hydrophone arrangement allows for two sets of three equidistant spaced pressure 
measurements to be analyzed, namely the transfer functions H12 and H32. In the 
following figures (Figs. 2 and 3) the measurement results of the Re(1/2(H12 + H32)) 
are shown.  
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Figure 2 – Real part of the transfer function for the PE pipe. 
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Figure 3 – Real part of the transfer function for the PB pipe. 

The results show the functional dependence as indicated by the real part of the right 
side of Eq. (9). The argument of the cosine function represented the influence of the 
wave speed, while the attenuation expressed as the argument of the hyperbolic cosine 
caused the amplitude attenuation. 

Wave speed 

The wave number was calculated using Eq. (5) with each of the two sets of 
measurements. In this case, the real part of the transfer function (Eq. (9)) was used. 
Phase speed is calculated according to the wave number as follows: cp = ω/Re(k). 
Using the least-squares linear regression in that range, the obtained phase speed is 
340 m/s. Above that frequency the phase speed increases approximately linearly with 
frequency, implying a frequency-dependent phase speed. This linear dependence can 
be approximated by the relationship with the following form: cp = 366 – 0,0334.f, 
where f is the frequency in Hz and cp the phase speed in m/s. 

The same procedure applied to the measurement results for the PB pipe gives a 
linearly frequency-dependent phase speed for the whole observed frequency range. In 
this case the phase speed could be approximated as: cp = 350 – 0,027.f. From the 
obtained results it is evident how the wave speed is influenced by the pipe material. 
Despite the fact that the wave speed is very similar for both pipe materials, there is a 
noticeable distinction in frequency dependence. Wave speed for the PB pipe is linear 
frequency-dependent for the whole frequency range, while for the PE pipe this 
dependence is distributed in two regions: low frequency, where speed is constant, and 
high frequency with strong frequency dependence. Regarding the connection between 
the phase speed and the attenuation according to the Eq. (9), similar results could also 
be expected for the attenuation coefficient. 
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Attenuation 

The measurement of the loss factor is based on the attenuation of sound pressure with 
distance along the length of the pipe. There are two basic mechanisms by which a 
wave is attenuated: geometric attenuation and material attenuation. Geometric 
attenuation is the phenomenon by which the amplitude of a wave decreases as the 
wavefront spreads out over a wider area. In the case of a fluid-filled viscoelastic pipe, 
this attenuation is the consequence of axisymmetric inflating and deflating of pipe 
wall caused by the fluid-borne pressure pulsations. Material attenuation can be 
classified as either intrinsic (absorption) or extrinsic (scattering).  
The attenuation (loss) of the amplitude of the propagating wave results in a negative 
value of the imaginary part of the wave number. This loss is given in dB/m as: 
 

 [ ] ( )
( ) ωα ⋅⋅=
⋅

−= 67,8
10ln
Im20/ kmdBLoss  (10) 

 
The wave attenuation can also be derived from the amplitude of the transfer function 
between sensor signals [8]. The rate of the attenuation is: 
 

 [ ] ( )
( )10ln
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Implementation of this method assumes that one can measure the decay in amplitude 
along the length of the pipe through the measurement of the transfer function. After 
performing a calculation of wave speed, based on the real part of the transfer 
function, these values were used to calculate the wave attenuation. For this purpose, 
the imaginary part of the transfer function (Eq. (9)) was used. Once a purely real 
valued initial guess is determined for the wave number, the method adjusts the value 
of both the real and imaginary parts of the wave number until the computed wave 
number most closely matched the measured value of the transfer function. Since the 
relationships used to find the complex wave number for wave propagation are known 
(Eq. (9)), the method essentially finds a complex wave number such that an analytical 
description of the transfer function at each frequency most closely approximates the 
measured transfer function at the same frequency. The results of this calculation are 
shown in Figs. 4 and 5. For the PB pipe, the wave attenuation is linearly frequency 
dependent and could be approximated as Loss = – 0,035.f [dB/m]. For the PE pipe 
(Fig. 4), the attenuation for the frequency range between 0 and 1 kHz was 
approximated as Loss = – 0,7442 – 0,035.f [dB/m] and for the range between 1 and 
1,5 kHz as Loss = 29,26 – 0,033.f [dB/m]. The influence of viscoelastic pipe material 
is clearly evident when this result is compared with the frequency-dependent phase 
speed. 
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Figure 4 – Attenuation for the PE pipe 
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Figure 5 – Attenuation for the PB pipe 

CONCLUSIONS 

This study presents an experimental determination of wave propagation 
characteristics in fluid-filled viscoelastic pipes. The method evaluated is the complex 
wave number fitting method in which an analytical description of the wave 
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propagation over the length of pipe is adjusted to match experimental measurements.  
The acoustic wave number of axisymmetric waves propagating in a finite pipe is 
determined from pressure measurements made at three locations along the pipe. Since 
the measurements were made in viscoelastic pipes, the wave number is complex and 
encompasses both the wave speed and wave attenuation. The real part of the 
measured transfer function was used to determine the wave number and the phase 
speed is obtained with the least-squares linear regression. These values were used 
further to calculate the wave attenuation. For this purpose, the imaginary part of the 
transfer function was used. This method is based on the adjustment of both the real 
and imaginary parts of the wave number until the computed wave number most 
closely matched the measured value of transfer function. Since the relationships used 
to find the complex wave number are known, this method essentially finds a complex 
wave number such that an analytical description of the transfer function at each 
frequency most closely approximates the measured transfer function at the same 
frequency. 

The effectiveness of the proposed method is assessed for two types of pipe 
material. The fluid-borne sound signal was highly attenuated and the three-transducer 
method was found to be less sensitive to excessive noise. Even in these circumstances 
the proposed calculation method enables the determination of the acoustical 
properties of fluid-filled plastic pipes within a wide frequency range. The measured 
attenuation exhibits less fluctuation in comparison with previous published results. 
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