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Abstract
When analyzing exterior acoustic problems employing the finite element method, special
measures are needed to satisfy the Sommerfeld radiation condition. Within the last decade
infinite elements have become a viable tool for numerical simulations in unbounded media.
Up to now, various infinite elements have been developed, where one of the best known for-
mulations are the so-called Astley–Leis elements. Similar to knowledge based concepts, these
elements try to resemble the analytic solutions for the Helmholtz equation in an unbounded
domain. However, for many problems, such as the sound radiation of slender structures, infi-
nite elements with high approximation orders seem to be necessary only in some local parts
of the discretization. Hence, in order to reduce computational costs, it appears reasonable,
to vary the order of the infinite elements within the discretization. In this contribution an
analysis procedure with infinite elements of variable order is presented. The applicability of
common (and eventually modified) error estimators within the analysis process is discussed
using representative numerical examples.

INTRODUCTION

Today, the analysis of complex systems with respect to their acoustic behavior is generally
achieved by means of numerical methods, such as the finite element method (FEM). A re-
view of developments and recent advances within the field of time-harmonic finite element
computations is given in reference [1]. While the FEM is well suited for the investigation
of interior acoustic problems, additional effort is necessary, when dealing with unbounded
domains. Today, several methods are available to model the sound radiation within finite
element computations. The most popular of these approaches are generally referred to as
non-reflecting boundary conditions, absorbing layers, and infinite elements. A survey of cor-
responding methods is given in reference [2] (see, e.g., Huttunen et al. [3] or Tezaur et al. [4]
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for more recent approaches). An advantage of the infinite element approach can be seen in
the fact that a solution in the whole unbounded domain is readily obtained within the simu-
lation process. The development of infinite elements started in the 1970s. Regarding exterior
acoustic simulations, further developments and generalizations particularly in the last decade
have made the combined finite/infinite element approach a reliable simulation tool. Mean-
while, different variants of these elements are also available in various commercial software
packages.

The simulations presented in this paper deal with an optimized variant of the so-called
Astley–Leis or mapped wave envelope elements. The original formulation of these elements
include Lagrange polynomials for the shape approximation in radial direction [5]. For this
polynomial basis, however, the resulting system matrix becomes ill-conditioned when used
with high approximation orders. Hence, the radial basis functions were later replaced by Leg-
endre polynomials. Motivated by an increasing use of iterative solution algorithms, other con-
cepts have been developed afterwards [6, 7]. The infinite elements employed in the current
contribution include Jacobi polynomials for the radial shape approximation. These lead to an
improved condition of the overall system matrix and subsequently to more efficient simula-
tions in combination with iterative solution schemes. Investigations regarding the efficiency
of these elements are given in reference [8].

The identification of regions with high error within the discretized system is generally
accomplished by means of a posteriori error estimators, where an estimate of local errors is
computed by processing the numerical solution. These estimators are the basis for analysis
procedures where the discretization is locally refined or enriched in order to obtain highly
accurate results while saving unneeded degrees of freedom. An overview of commonly em-
ployed a posteriori error estimators can be found in reference [9].

Exterior vibro-acoustic investigations often deal with structures that evolve a distinct
directionality. Hence, it seems to be appropriate to vary the approximation order of the infinite
elements within the discretization. While error estimation for acoustic problems in interior
domains (see e.g. [10]) as well as in exterior domains in combination with non-reflecting
boundary conditions (see e.g. [11]) have been frequently investigated, the analysis of adaptive
strategies for infinite elements remains somewhat unexplored. Quite recently, Demkowicz et
al. presented an hp-adaptive method with finite and infinite elements of locally variable order
[12]. In their work, however, the adaption of the radial order of an infinite element is linked to
the refinement/enrichment of the corresponding underlying finite element. In this contribution,
in order to investigate the capabilities of an adaptive enrichment of the infinite elements, the
discretization within the conventional elements remains unchanged and the enrichment is
restricted to the infinite elements only.

FINITE/INFINITE ELEMENT COMPUTATION

Starting point for the sound radiation analysis is the exterior acoustic problem depicted in
Figure 1. Consider a body with a vibrating surface S. The domain of interest is denoted Ω

and is separated by the envelope Γ in an interior part Ωe and an exterior part Ωi. Inside the
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Figure 1: Exterior acoustic problem

acoustic fluid the wave speed c and the fluid density ρ are assumed to be constant, and the
sound pressure p is governed by the Helmholtz equation. On the surface S the normal velocity
vn is prescribed by means of Neumann boundary conditions. Together with the Sommerfeld
radiation condition on the artificial boundary ΓX at infinity, the governing boundary value
problem reads

∆p + k2p = 0 in Ω (1)

vn = v̄n on S (2)

ikp +
∂p

∂r
= o

(

X−(d−1)/2
)

on ΓX (3)

where k = ω/c is the wave number, d is the dimension of the problem and r is the radial
direction.

Employing a standard Galerkin weighted residual technique in the interior part and a
Petrov–Galerkin scheme in the exterior part leads to the finite/infinite elements formulation of
Astley et al. [5]. Hence, conventional finite elements are used within Ωi and infinite elements
are then attached on the envelope in order to fulfill the radiation condition.

The shape functions of the infinite elements may be obtained from a tensor product
of the shape approximation on the base (corresponding to the underlying finite element) and
a shape function for the radial direction. The radial shape functions are then intentionally
chosen, such that with increasing approximation order the analytic solution of the Helmholtz
equation is resembled.

The radial basis used in the current work is based on Jacobi polynomials and may be
written in a hierarchic form. This is somewhat essential for a local refinement of the element
order, since no modification of the original set of approximation functions is necessary, when
adding or removing specific modes to the element basis.

A POSTERIORI ERROR ESTIMATION

For complex problems where no analytical solution is readily available, a local refinement of
elements within a discretization is normally based on a posteriori error estimators. Computa-
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tions and refinement of the infinite elements in this contribution are based on rather basic error
estimators. An estimation of the error may be obtained by means of explicit residual meth-
ods. Kelly et al. [13] proposed an error estimator where the error is defined by the interior
residual and the boundary residual. Regarding the enrichment of the infinite elements, only
the boundary residuals on the envelope are considered for the corresponding computations in
this contribution.

Another approach to estimate the error may be obtained from the fact that with increas-
ing order of the infinite elements the quality of the numerical solution also increases. Hence,
the difference between two numerical solutions with infinite elements of different order may
serve as an error indicator (cf. [9] and the references therein for details). Advantages of this
method are the rather general applicability and the rather easy implementation. An obvious
drawback, however, is the fact that the original problem has to be solved for two different
discretizations before an indication of the error is obtained.

NUMERICAL EXAMPLES

As mentioned earlier, the infinite elements generally try to resemble the analytic solution of
the Helmholtz equation in an unbounded domain. Furthermore, infinite elements of radial
order m can model the sound radiation behavior of a multipole of similar order exactly. In
order to investigate the capabilities of a locally varying radial order of the infinite elements,
the example investigated here is the sound radiation of a spherical structure of radius RS = 10.
The surrounding fluid is discretized with one layer of finite elements. The infinite elements
are then attached at the envelope located at RΓ = 11. Figure 2 (c) depicts a quarter of the
discretization. Normal velocity boundary conditions corresponding to a specific multipole
are prescribed on the inner boundary. For this example an analytic solution can be derived.
Taking the diameter of the sphere as a reference length, the non-dimensional wave number is
kRK ≈ 2. The computations were performed employing the FE-library libMesh [14].

The results given in Figure 2 (a) and (b) depict distributions of the estimated and the
actual error on the envelope for the sound field generated by a quadrupole, where a residual
based error estimator has been employed. Qualitatively, the estimated error matches the dis-
tribution of the actual error. Corresponding to the error indication, the radial order has been
locally increased as depicted in Figure 2 (d).

The computed sound pressure amplitude in circumferential direction for infinite ele-
ments of order m = 1, m = 2 and for the discretization with varying order are shown in
Figure 3.

In a second example, the difference of two numerical solutions obtained from simula-
tions with different radial order is employed as an error indicator. First, the problem is solved
for infinite elements of order m = 0 and m = 1. In subsequent steps, the order is increased, if
the difference exceeds a certain criteria. For the sound field generated by a multipole of order
5, Figure 4 depicts the error and the resulting refinement up to order m = 5 on the envelope.

In order to monitor the numerical solution, a scaled L2–error within the conventional
finite elements has been computed. The error is generally defined by ‖pex − ph‖L2

/‖pex‖L2
,
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Figure 2: Estimated error (a) and actual error (b) distributions, FE model (c) and enrichment
of the discretization(d).
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Figure 3: Sound pressure amplitude for discretizations with different radial order m and ana-
lytically exact solution.

where ph is the finite element solution and pex is the analytical solution. Comparing the nu-
merical solution obtained from the radial orders depicted in Figure 4 (with 9949 radial degrees
of freedom) with the solution for infinite elements of order m = 5 (with 12010 radial degrees
of freedom), the difference of the L2–error occurred to be less than 1%.
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Figure 4: Error (left) and radial order of infinite element varying from 1 to 5 (right).

SUMMARY

The concept presented in this contribution enables a locally refinement of radial order of the
infinite elements. In order to fully exploit the advantages of the adaptive refinement, further
investigations regarding the a posteriori error estimation are necessary.
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