
 

 
 

 

ADAPTIVE DESIGN OF LINEAR-PHASE MAXIMALLY 
FLAT FILTERS FOR DIGITAL AUDIO 

 
Martin Dadić*, Vlado Sruk, and Branko Somek

Faculty of Electrical Engineering and Computing, University of Zagreb 
Unska 3, HR-10000 Zagreb, Croatia 

martin.dadic@fer.hr  

Abstract 
Linear phase response and flat magnitude response are highly desirable characteristics of any 
filter in audio signal processing. This paper proposes a simple and efficient novel procedure 
for the design of finite impulse response (FIR) maximally flat filters with linear phase. The 
procedure is based on Butterworth polynomials, bilinear transformation and adaptive inverse 
modelling. Instead of using prescribed magnitude response through a set of discrete values, 
the designed filter has magnitude response equal to the squared magnitude response of a 
Butterworth filter. Instead of multisine excitation, random noise is used as the excitation 
signal for the adaptive process. The delayed noncausal impulse response component is 
approximated using the causal impulse response of a finite impulse response filter. Possible 
applications of newly proposed design method are in restoration of old analogue audio 
recordings, acoustical measurements or audio engineering. 
 

INTRODUCTION 

Linear phase response and flat magnitude response are highly desirable characteristics 
of any filter. Precise linear phase requires that poles and zeros exist in mirror-image 
pairs. The impulse response of a linear-phase finite impulse response (FIR) filter has 
to be symmetrical [1]. The standard method for the design of a linear-phase digital 
filter is the Park-McClellan algorithm [2] which employs the Remez exchange 
algorithm and Chebyshev approximation theory.  

An adaptive process to the design of linear-phase FIR filters is given in [3]. 
Here, the coefficients are adjusted identically in pairs using the adaptive least mean 
squares (LMS) algorithm. This method is an extension of the application of adaptive 
modelling to FIR digital filter design, and uses the set of prescribed gain magnitude 
and phase characteristics. The input signal and desired response of the filter are the 
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sums of sinusoids with prescribed amplitudes and phase shifts. 
This paper proposes a novel method for realizing FIR filters with linear phase 

and flat magnitude characteristics. The procedure is based on Butterworth 
polynomials, bilinear transformation and adaptive inverse modelling. Instead of using 
prescribed magnitude response through a set of discrete values, the designed filter has 
magnitude response equal to the squared magnitude response of a Butterworth filter. 
Generally, instead of multisine excitation, random noise is used as the excitation 
signal for the adaptive process. 
 
 

PROPOSED METHOD 

Let us define the Butterworth function of order n , 
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where n is filter order, s j= ω denotes complex frequency, j = −1 , ω  is radian 
frequency and sω is Butterworth filter cutoff radian frequency [4]. 
By applying the bilinear transformation 
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where T denotes sampling period and z is variable in the z-transform, we obtain 
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Figure 1 - Adaptive inverse modelling of Q(z) 
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H(z) has poles in mirror-image pairs, where each pole inside the unit circle in the z-
plane has its counterpart outside the unit circle. These poles outside the unit circle 
correspond to the left-handed, noncausal sequence in the symmetrical impulse 
response. This delayed left-handed sequence can be approximated by the causal 
impulse response of a FIR filter designed by an adaptive inverse modelling procedure 
that includes modelling delay.  Application of an adaptive inverse modelling 
procedure [3] to the approximate determination of the inverse of Q(z) can be 
described  by Fig. 1. Here, e(n) denotes the error signal, u(n) is the training signal, 
x(n) is the output signal from the plant that is to be modelled, and y(n) is the adaptive 
filter output signal. 
Adaptive filter output is defined by 
 

y n n nT( ) ( ) ( )= X W   ,                                                      (4) 
 
the error signal is 
 

e n d n y n( ) ( ) ( )= −  ,                                                  (5) 
 
where  
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is the weight vector of the adaptive finite impulse response (FIR) filter, and 
 

[ ]X( ) ( ) ( ) ( )n x n x n x n L T
= − − +    ...    1 1  

 
is the input signal vector. L is adaptive filter length, ∆  is modelling delay, and [ ]  
stands for vector transpose. 

T

W z( )  signifies delayed inverse approximation of the 
denominator in (3).  

Since the numerator P(z)  is binomial and 
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the coefficients of P(z)  are symmetrical, and consequently P(z) is a linear-phase 
transfer function. Since H(z) is zero-phase, the delayed approximation of 1/Q(z) is 
also linear-phase.  

The coefficients ck of the resulting filter that approximates H(z) can be achieved 
by multiplication of the polynomials (or convolution of the vectors of the 
coefficients): 
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The length of the resulting FIR filter is M=L+2⋅n. If we want the resulting FIR filter 
to be a linear-phase one, its length has to be an odd number and the modelling delay 
has to be ∆=(M-1)/2. This way the FIR approximation of the delayed inverse 1/Q(z) 
will also be linear phase, with the central coefficient 

2
1−Lw . Since M is an odd number 

and 2·n is even for any n, L is also an odd number.  
Due to misadjustment in the chosen adaptive process, the resulting filter is not 
exactly, but approximately linear phase. However, the difference is very small if 
residual error signal power is negligible compared to the input signal power.  

As the candidates for adaptive inverse modelling, the least mean squares (LMS) 
[3], recursive least squares (RLS) and adaptive Kalman filter [5,6] were applied. All 
proposed methods use random white noise as the training signal. The adaptive 
Kalman filter showed greatest robustness for higher filter orders and lower cutoff 
frequencies. 

The Butterworth filter cutoff frequency sω is related to the desired –3dB cutoff 
frequency 0ω  of the analogue prototype )(ωH  as 
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Also, during the design, the frequency warping caused by the bilinear transformation 
has to be taken in account.  

 
 

Figure 2 - Impulse response 
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FILTERS WITH LOW CUTOFF FREQUENCY 

Since the magnitude frequency response of Q(z) increases with frequency, and the 
bilinear transformation maps the frequency infinity to the Niquist frequency, for 
higher filter order and for lower cutoff frequencies the magnitude of Q(z) very rapidly 
increases with frequency. In this case, a white-noise training signal causes x(n) to be 
over-emphasized for higher frequencies, and results in an exceptionally high residual 
error signal at the end of the adaptive process. Even with the adaptive Kalman filter 
for n greater than 4 and continuous-time cutoff frequencies below 40% of Niquist 
frequency, the process fails. In these cases, a synthesized lowpass multisine signal 
with random phase can be used as the training signal: 
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where t denotes time and f l   is frequency. The proposed input signal contains 
additive random phase lφ . This way the sharp spikes are avoided, and the excitation 
signal has a pseudo-random shape, in the time domain. This concept is described in 
[7]. The upper bound of the multisine signal must be high enough to cover the 
transition band. The phase response will be linear for the passband and transition 
band. The overall phase response will no longer be linear, but since the magnitude in 
the stop frequency band is very small, this is not significant. 

 

Figure 3 -  Magnitude response 

 
NUMERICAL RESULTS 

Fig. 2 presents the impulse response of a linear-phase filter designed using the 
proposed procedure. The filter order is 38 and n=4, i.e. filter order of continuous-time 
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prototype is 8. The continuous-time Butterworth filter cutoff frequency sω is equal to 

Nω⋅4.0 , where Nω  denotes Niquist frequency. The length of the resulting filter is 
39, and modelling delay ∆  is 19. The adaptive Kalman filter was used for adaptive 
inverse modelling. All calculations were run in the MATLAB environment and the 
adaptive Kalman filter was realized using Filter Design Toolbox. Figures 3 and 4 
present magnitude and phase responses of the same filter. The phase characteristic is 
highly linear, except for frequencies in the vicinity of the Niquist frequency. This 
nonlinearity is not important since those frequencies lie far outside the transition 
band. Figure 5 presents the error signal during the adaptation process. We observe a 
very low level of residual modelling error. About 1000 iterations were quite enough 
to accomplish satisfactory modelling error. 
 

 
 

Figure 4 - Phase response 

 
 

Figur 5 - Error signal during adaptation 
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CONCLUSIONS 

In this paper, we have presented an adaptive method for the design of linear-phase 
FIR filters. The proposed technique is very simple, and it guarantees a magnitude 
response that is maximally flat in the passband, and monotonic overall. For higher 
cutoff frequencies and for lower filter orders, the method can be simplified even 
more, with the application of the LMS algorithm instead of the Kalman filter. 
Possible applications of newly proposed design method are in restoration of old 
analogue audio recordings, acoustical measurements or audio engineering. 
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