
 

 
 

 

Eds.:  J. Eberhardsteiner, H.A. Mang, H. Waubke 

NUMERICAL MODELING OF SOUND SIGNAL 
PROPAGATION THROUGH A LIQUID WITH BUBBLE 

AREA 

Nikolai A. Kudryashov*1, Nikolai A. Teterev1 

1Department of Applied Mathematics,  
Moscow Engineering and Physics Institute (State University),  
31 Kashirskoe Shosse, 115409, Moscow, Russian Federation 

kudryashov@mephi.ru 

Abstract 
Numerical modeling of pressure wave propagation is considered in a liquid with air bubbles, 
which are in the rectangular channel. It is assumed that the liquid is the acoustically 
compressible one and besides that the Herring-Flynn state equation is used for the bubble 
description. It is shown that properties of the pressure wave propagation depend on the gas 
volume content and on the bubble area width. Regimes when amplitude of the pressure wave 
is much more than initial one are found. 

INTRODUCTION 

Pressure wave propagation in a liquid with a bubble area is an important problem. 
The similar phenomena arise in many natural and technical processes. Gas bubbles in 
a liquid change acoustic properties of fluid. This influence can have various 
characters. Plane wave propagation via an air bubbling has been investigated fairly 
comprehensively (see [1,2]). Effects of waves damping in air bubbling were carefully 
studied (see [3-5]). Attempts of numerical modeling of the two-dimensional pressure 
wave propagation via an air bubbling of square section were presented in [6], where 
the pressure wave amplification in comparison with the initial disturbance was 
revealed. 

In the given work we study the mechanism of pressure wave increase at their 
propagation via a channel with the bubble. We have shown that the cumulative flow 
is formed as a result of interaction of the wave with the bubble zone. This 
phenomenon leads to the pressure splash in the bubble area. Formation of such flow 
can be explained by the pressure gradient directed inside of the bubble zone. 
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This paper outline is as follows. The mathematical model of the problem 
considered is presented in Section II. The method of the computational solution of the 
problem is given in Section III. We discuss the results of the numerical modeling of 
the problem considered in Section IV. 

II.  FORMULATION OF THE PROBLEM 

Let the wave disturbance propagate in the tank of rectangular section (Fig. 1). Let us 
also suppose that the tank is filled by water with a bubble area. We assume that the 
initial disturbance does not depend on z, therefore the problem will be two-
dimensional. 

The mathematical model is considered at following assumptions. Water is 
assumed to be acoustically compressible liquid and gas in bubbles is described by the 
state equation for the ideal gas. All the bubbles have the spherical form and equal 
radius for each elementary volume. We do not take into account processes of bubble 
fragmentation and adhesion. Let us assume the distance between bubbles be much 
greater than the bubble radius and the interaction between bubbles be due to pressure 
changes only. We consider that fluid viscosity is significant only in the processes of 
interaction between the phases. 

 
Figure 1 - Estimated area. 

The mathematical model with the above mentioned assumptions corresponds to 
assumptions which are taken into account in [2]. The system of differential equations 
describing our problem can be written as  
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where ρ is the average density of a liquid and bubbles, 0

ir  is the real density of each 
phase, u and v are the components of velocity in x and y direction, accordingly, n is 
the number of bubbles per unit volume, ip  is the pressure of phases, R is the bubble 
radius, γ is the adiabatic exponent, w is the radial velocity of bubble, q is the heat 
transfer rate, ia  is the volume content of phases. The subscripts i=l, g correspond to 
liquid and gas phases. 

We assume that bubbles can radiate a sound which leads to the energy 
dissipation at the wave propagation. All these effects are taken into account in the 
Herring-Flynn state equation [7] 
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where ln  is the liquid viscosity, Cl is the speed of sound in the pure liquid (Cl=1500 
m/s).  

Considering liquid as acoustically compressible and the gas as ideal we get the 
state equations for phases in the form 
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~
R  is the gas constant. Here and in what follows, the subscript 0 denotes the 

parameters related to the initial undisturbed state. 
The heat flow q can be obtained from the following relations 
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where T0 = const is the fluid temperature, gl  is the thermal conductivity, Nu is the 
Nusselt number, Cg is the thermal capacity of gas. 
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Thus the mathematical model of our problem is described by the system of 
equations (1) - (11) with initial and boundary conditions. Using this system of 
equations we investigate wave propagation via bubble area. 

III. NUMERICAL METHOD FOR THE PROBLEM 

We do not have any possibility to find the analytical solution of our problem. 
Therefore we use the numerical method to solve the above mentioned problem. 

Let us use the Lagrangian coordinates as in this case the bubble area will be 
fixed. Considered amplitudes of pressure waves do not lead to distortion of 
Lagrangian grids and this simplifies algorithm, which solves the problem. 

Using the Lagrangian variables the system of equations (1)-(2) can be written as 
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where J is the Jacobian of the transformation from Lagrangian to Euler variables, х0 
and у0 are the Lagrangian variables, which are taken equal to the initial values of the 
Eulerian coordinates.  

The Herring-Flynn state equation for adiabatic compressed gas takes the form 
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where S0 is the "volume" of a cell in Euler variables, N is the quantity of bubbles in a 
cell. The state equations for phases are the following 
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The system of equations (12) - (18) is solved numerically using an implicit 

scheme. We use a rectangular grid for approximation of the differential equations  
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where hx0, hy0 , and τ are the steps in the X, Y coordinates and time, respectively. 

For numerical simulation of our problem we choose the time step using the 
Kurant’s condition [8]. 

IV. RESULTS OF NUMERICAL MODELING  

Let us present some results of numerical modeling of wave propagation in a liquid 
containing bubble area. At numerical modeling we assume that pressure on the wall at 
х=0 has dependence on time in the form 
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At other walls we take a solid wall into account. As initial condition we use 

undisturbed liquid with bubble area.  
For all calculations we apply the following values for the impulse parameters: 

p0 = 0.1MPa, ∆p0 = 0.3MPa, t* = 1ms, T0 = 300 K, where T0 is the liquid 
temperature. 

Figure 2 shows evolution of the pressure wave in the first variant of calculation. 
In this variant we observe the strong increase of the pressure splash. Parameters of 
this variant are the following: lx = 4m, ly = 0.01m are the length and the width of 
bubble zones, R =10-4m is the bubble radius. The tank has the size 5m×1m, the 
volume content of gas equals 10-2. We can see that the splash is formed on the crest of 
wave, and this one propagate together with liquid, but it moves slowly in time. We 
can notice that the amplitude of wave is increasing in time up to the value of 30 
atmospheres which is 9 times as much as initial one. After that we observe the 
destruction of the splash because the conditions supporting its existence are broken. 
The pressure near walls falls up to 2 atmospheres. The velocity of the splash 
distribution is 1000 m/s and the velocity of the wave is 1500 m/s. 

In the second variant of calculation the volume content of gas is 10-3 what is 
less than in prevision case. Other parameters of calculation are the same. We observe 
long existence of the pressure splash in this variant of calculation. The pressure splash 
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appears gradually and is formed before the wave, where it exists long enough time 
and propagates with velocity equal to sound speed in a pure liquid. Evolution of the 
splash is presented in figure 3. 

 
Figure 2 - Pressure diagram at the moments of time t = 1.2ms (left) and t = 1.6ms (right). 

We can see three peaks on the oscillogram of this signal what tells us that the 
oscillatory splash mode appears. By the end of calculation the pressure of splash is 
2.5 times greater then amplitude of an initial signal. 

 
 Figure 3 - Evolution of a wave impulse at αg = 10-3. 

Pressure upon lateral walls in the given variant of calculation decreases at the 
beginning, when wave enters the bubble zone. This decrease is not more than 0.3 
atmospheres. There is a repressuring upon lateral walls and eventually it is recovered 
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but the wave thus is narrowed. 
In the third variant of calculation we change the width of the tank. More exactly 

it equals 0.4m. The given parameter changes the time of the existence of the pressure 
splash. This fact is illustrated in figure 4. In the given variant of calculation the 
pressure splash exists not a long time. The relation of the bubble channel width and 
the tank width influences the time of existence of the pressure splash. This relation is 
equal to 0,025. In this case the velocity of the splash distribution is about 840 m/s, a 
velocity of the wave is almost 2 times greater. 

 
Figure 4 - Pressure diagram at the moments of time t = 1.2ms (left) and t = 2.2ms (right) 

The fourth variant of calculation shows influence of value of the bubble channel 
width on the wave propagates evolution. In this case we increase the bubble channel 
width in 5 times in comparison with other variants of calculation. It equals 0.05m. 
Other parameters in this variant of calculation are the following: the tank is equal to 
5m×3m, the volume content of gas equals 10-2. The illustration of the wave evolution 
in this variant of calculation is given in figure 5. From figure 5 we see that the splash 
forms behind the pressure wave. The velocity of the splash in the bubble channel is 
equal to 400 m/s. The basic wave moves quickly and conditions for existence of the 
splash are broken. Late the splash collapses and gives a divergent wave. 

 
 Figure 5 - Evolution of a wave impulse at αg = 10--2 and ly = 0.05 m. Pressure diagram 

at the moments of time 1.2 ms (left) and 1.7 ms (right)  
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V. CONCLUSIONS  

Analysing the results of numerical modeling of the pressure wave propagation in a 
liquid with a bubble area we get that the pressure splash is formed in a bubble area. 
Also we can see that the value of the pressure splash depends on the bubble channel 
width, on the volume content of gas, and on the relation of the bubble channel width 
to the tank width. 

We have found the value parameters of the problem when the pressure splash 
exists in the bubble channel for a long time. Two additional pressure splashes can be 
observed as well (the second variant of calculation). 

We have got conditions when the pressure splash can appear behind, before and 
on initial wave (the first, the second and the fourth variants of calculation). 

We have obtained that decreasing of the bubble channel width leads to 
increasing of the splash amplitude. The value of the splash amplitude can far exceed 
initial signal more than in 9 times (the first variant of calculation).  
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