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Abstract 
An investigation of the nonlinear characteristics for the internal damping of graphite 
fibre-epoxy composite materials for use in flywheel components is presented. Special 
attention is given to the dependence of vibration damping on the displacement 
amplitude and natural frequency of the test samples. These samples consisted of thin 
composite beams held in a clamping fixture that allows one of the ends to be adjusted, 
stretching the sample so as to vary the first natural frequency. The characteristics of a 
series of transient vibration responses at the first natural frequency obtained 
experimentally were studied, showing a clear relationship between the amplitude of 
vibration at each frequency and the associated damping. Linear and nonlinear 
lumped-parameter system models were developed and evaluated for accuracy and 
functionality. These models of vibration damping can be implemented in complex 
models for flywheel systems simulation in order to enhance the reliability and 
accuracy of the predicted vibration stability thresholds. 

INTRODUCTION 

Flywheel energy storage systems for aerospace application require materials that have 
high strength and low weight. In the search for materials to build components for 
such, composite materials and, especially, fibre reinforced composites, are a popular 
choice. They offer a wide range of tailoring possibilities, light weight, and can 
withstand very high stress levels. 

Extensive research has been conducted to determine the damping characteristics 
of composite materials [3] [4]. These works include the consideration of viscous and 
hysteretic damping as well as nonlinear effects. In addition, the influence of internal 
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damping as a driver for rotordynamic instability has received attention from various 
authors (references). These works have included both simplified and detailed studies 
and have considered both modelling/analysis and experimental testing. However, a 
practical model for analyzing the dynamic behaviour of flexible composite rotor 
components that accounts for changes in effective damping ratio with vibration 
amplitude and natural frequency is not currently available.  

Although the dependence of damping ratio on vibration displacement is widely 
recognized, there has been little work that has employed the method of free vibrations 
to assess such dependence [2]. As can be seen in Figure 1a, a single (unique) value 
for the damping ratio does not adequately represent the actual shape of an 
experimentally measured vibration decay rate. Figure 1b (where the vertical axis is 
represented by log scale) illustrates further the dramatic differences between the 
damping ratios at low and high amplitudes. As the displacement amplitude of the 
vibration increases, the value of the damping ratio increases as well. In dynamic 
systems, where stability can be highly dependent on internal damping, such increase 
may shift the effective stability thresholds considerably for some designs. 
Accordingly, the objective of this paper is to assess the functional form of the 
amplitude dependence of damping ratio for carbon-epoxy composites in order to 
improve the predictive capability of dynamic models of speed flywheel energy 
storage systems.  
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Figure 1 – Two fixed-exponential fittings of the top envelope of free vibration decay of the 

first natural frequency (593 Hz). The damping ratios differ by 72.8%. 
 a) y axis in linear scale, b) y axis in logarithmic scale. 

THE METHOD OF FREE DAMPED VIBRATIONS BY TIME BLOCKS 

The rate of reduction of free vibrations is typically determined using the logarithmic 
decrement of vibration, δ, or by the dissipation factor, ψ, the corresponding relative 
energy dissipation [7]. The logarithmic decrement can be related to the damping ratio, 
ζ, and also to the energy dissipation or damping capacity, ψ. It is determined over 
several (n) cycles of the decay of vibration of a single degree of freedom system from 
the displacement amplitudes, using 
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where Ai and Ai+n are the amplitudes corresponding to the ith and the (i+n)th cycles of 
the vibrations, respectively. The damping ratio describes the decay in the time 
response of a linear damped single-degree-of-freedom system subjected to an initial 
displacement, A, as shown in equation (2), 
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where ωd is the frequency of damped free vibration, ωn is the natural frequency and φ  
is the phase. The value of the damping ratio is the averaged characteristic of the 
energy dissipation in “n” cycles of the vibration. 

For an amplitude-independent damping, the value of the damping ratio is 
unique and the classical spring mass damper system shown in equation (3) can model 
the vibration decay. However if the damping is amplitude-dependent, the value 
changes, with a different value associated with each average amplitude in the range 
considered, (Ai+Ai+n)/2 [7]. For such cases, this amplitude dependency must be 
incorporated into the damping function if the dynamic behaviour of the dynamic 
system being considered is to be accurately modelled. One approach is to modify the 
damping function to directly account for amplitude dependence, as shown in the 
modified system of equation (4), where a linear dependence on instantaneous 
displacement is assumed. Please note that an assumption is made that the linear 
dependence on vibration displacement amplitude (described above and observed 
experimentally) will be preserved if a function of instantaneous displacement is used 
instead. This assumption allows generality and ease of implementation of our model. 
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Figure 2 shows an example experimental decay of the vibration and the lines 
formed by the peaks of the decays of the two single degree of freedom models of 
equations (3) (using a parametric ‘best’ fit to the experimental data). The first model 
(using a constant damping ratio of 0.0011) provides a good fit to the decay of 
vibrations but cannot follow it properly, particularly at higher amplitudes of vibration. 
However, the second model [equation (4)] that takes into account the dependence of 
the effective damping ratio on vibration displacement can be seen to follow the 
envelope much more precisely. 
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Figure 2 – Experimental free decay of vibration and the envelopes of the fittings with 

constant damping ratio and linearly changing damping ratio. 

TEST SETUP AND EXPERIMENT 

In order to apply the mechanical characteristics of the material in question to the 
modelling of flywheel systems, it was necessary that responses be observed for a 
variety of vibration amplitudes and frequencies. A relation between damping and 
natural frequency at low amplitude was achieved successfully in a previous paper by 
the authors [12], showing a constant damping for the limited range of frequencies 
studied. But a much wider range of frequencies had to be considered to reach the 
range of natural frequencies associated with a high speed flywheel system (on the 
order of 1 kHz). The shortest samples available to authors could practically not have a 
natural frequency greater than 100 Hz. Shorter beams yielded unreliable results due to 
end clamping effects that are difficult to control. In order to extend the measurement 
range, the samples were subjected to a tensile load so as to increase the effective 
natural frequency and, at the same time, include the effect of preload and the high 
levels of stress present in flywheel components. Attempts were made to use a tensile 
testing machine in this regard, but the clamps used to fasten the samples allowed 
some lateral displacement that complicated the measurement of vibration while the 
samples were stretched. A specially designed test rig was developed and constructed 
to allow stretching of the samples with a tight attachment of the clamps. 

A photograph of the test setup is shown in Figure 3. The left side is fixed to the 
base by two large bolts and the right side can slide smoothly within the limits of the 
clearance between the fastening bolt and the associated hole. The desired tension is 
set by means of the fine pitched stretch control bolt on the far right, which pulls the 
sliding clamp towards a fixed block. Once the desired natural frequency for 
measurement is obtained, the vertical bolt is fastened, fixing the right end of the 
sample in that position.  

The test samples are made of graphite-epoxy in a 0º-90º-0º-90ºs. They have an 
effective length of 110 mm and thickness of 1 mm, measured between the innermost 
sides of the clamp fillets. These fillets machined at each end (a dog-bone 
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configuration), were added to minimize the effect of the friction between the sample 
ends and the clamps in the overall vibration decay. 

 
Figure 3 – Test rig. 

A strain gage was placed in the surface of the sample, aligned with its 
longitudinal axis, to determine the strain in the sample. This allowed for the 
calculation of the applied load (given knowledge of the Young’s Modulus of the 
specimen) and to relate the load applied with the first natural frequency of bending 
vibration. A dummy strain gage was bonded to a slab of the same material as the 
sample, to complete a half bridge configuration, which accounts for any thermal 
stresses occurring in the strain gage mounted on the sample. 

 
Figure 4 – Experimental setup. 

The measurement procedure consisted of setting the tension of the sample, 
applying an initial displacement and measuring the free decay of the amplitude of 
vibration of the first natural frequency, using a laser vibrometer focussed on the 
centre of the sample. The measured signals were recorded by a computer equipped 
with a data acquisition system, where further signal filtering was performed to isolate 
the vibration at the first natural frequency from small effects coming from resonance 
frequencies of the rig and other natural frequencies of vibration of the beam. For the 
analysis of the signal, the method of free damped vibrations was applied to windows 
or blocks of data in the time domain. The length of each window was chosen to be of 
30 cycles, i.e., including 31 peaks, after studying the correlation of results at different 
window sizes. This matched the criterion used in a similar study, in which 20 was 
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determined as the minimum number of cycles to be considered for each block [2]. 
The sampling frequency used to register the vibration decays was 132,300 Hz. The 
sensitivity of the laser vibrometer was set to 80 µm/V, at which the full scale output is 
1.3 mm and the resolution is 0.32 µm. 

RESULTS 

Similar reference amplitudes were used to measure local damping ratios in each of 
the time traces that were recorded. Four vibration decays were registered, at 593, 677, 
735 and 744 Hz. The vibration amplitudes selected were in a range between 40 and 
75 µm, which was present in all of the measured signals. The results obtained for the 
damping ratio show clear trends with regard to dependence on frequency and 
vibration. Linear functions to describe the change in damping ratio, both with respect 
to frequency and with respect to displacement, are a logical first candidate. As seen in 
Figure 5 and Figure 6, this functional form shows very good agreement with the 
experimentally measured results.  
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Figure 5 – Damping ratio vs. 1st natural frequency for different vibration amplitudes. 
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Figure 6 – Damping ratio vs. vibration amplitude for different 1st natural frequencies. 
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Further examination of the results showed some very interesting observations. 
An increase in natural frequency not also served to reduce the damping ratio, but also 
to increase the slope of the amplitude dependence, making a constant damping ratio 
even less accurate for higher frequencies. In addition for vibrations at low amplitude, 
a change in the natural frequency has a greater influence on the value of damping 
ratio. In order to account for these characteristics, the damping ratio is now modelled 
using four parameters. This results in the functional relation shown in equation (5), 
relating damping ratio, ζ, to displacement amplitude, x (in meters), and natural 
frequency, ωn (in rad/s). 

 
ζ = (1.5669e-005 ωn + 3.4293) x + (-1.5083e-007 ωn + 0.0016837) (5) 

CONCLUSIONS 

A detailed study of the damping characteristics of carbon-epoxy composite 
components has been conducted. This has included both experimental testing of 
composite samples and model development. Vibration amplitude and frequency was 
shown to have a substantial influence on the effective damping ratios. 

A correlation between the measured damping ratios for different frequencies 
and amplitudes has resulted in the development of a model for damping ratio that is 
described using linear functions of frequency and amplitude. This model provides 
increased predictive accuracy as compared using a constant damping ratio. As the 
natural frequency increases, the damping ratio becomes smaller and the dependence 
of damping ratio on amplitude becomes more pronounced. The model proposed can 
clearly simulate the experimental results in a more precise fashion and is consistent 
throughout the range of natural frequencies studied. 
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