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Abstract 
Exhaust noise of IC engines is the main component of noise pollution of the urban 
environment. To attenuate the exhaust noise, expansion chambers with different 
configuration has become an important area of research and development. The 
present study considers acoustic characteristics of circular fully-filled perforated 
dissipative mufflers with extended inlet/outlet. In addition to the finite element 
method, an experimental work is considered. Fiber material with different radii is 
presented and discussed. Perforation ratios of the pipes are also discussed in this 
study. All parameters validated with experimental work with a practical designed 
muffler for obtaining the transmission loss. Comparison with the results obtained via 
experimental measurements justifies the approaches used here. 

INTRODUCTION 
Expansion chambers with extended pipes exhibit a desirable acoustic attenuation 
performance as a combination of usually broadband domes of a simple expansion 
chamber and the resonant peaks of a quarter-wave resonator. Various selections of 
lengths of extended ducts cause a great improvement on the acoustic behaviour of 
silencers over a wide frequency range. Furthermore, recent works in fiber properties 
combined with their broadband acoustic dissipation characteristics and perforated 
ducts make such mufflers potentially desirable for their acoustic characteristics. The 
acoustic attenuation of the exhaust muffler is important for automotive engineers. 
Exhaust muffler designers often use fiber materials and perforated pipes in dissipative 
mufflers in order to improve the attenuation over a wide frequency range.  
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Different methods for modelling dissipative mufflers have been studied previously by 
the researchers. Xu et al. [1], by using a two-dimensional analytical approach, 
examined the effect of fiber thickness, chamber diameter and material properties on 
the acoustic performance of dissipative silencers. An analytical approach was 
proposed based on the solution of eigenequation for a circular dissipative expansion 
chamber. The acoustic pressure and particle velocity across the silencer 
discontinuities were matched by imposing the continuities of the velocity/pressure 
integral over discrete zones at the expansion/contraction. Kirby [2], presented a 
method that two-dimensional finite element eigenvalue calculation is combined with 
a point collocation matching scheme in the inlet/outlet ducts for mufflers with mean 
flow and perforated pipe. This method showed a good agreement with experimental 
measurements. Selamet et al. [3], combined the behaviour of extended ducts and the 
effects of dissipation of absorbing materials. A hybrid silencer was studied both by 
methods of boundary element method and multi-dimensional approach to see the 
effects of variations in the structure of the muffler. Finite element method was 
commonly discussed for modelling mufflers by means of taking three-dimensional 
effects into account. Munjal [4], considered methods for solving Galerkin formulation 
and also Mehdizadeh et al. [5], implemented a three dimensional finite element 
method to predict the transmission loss of a muffler for a wide frequency range. In 
those studies, a hybrid muffler with perforated pipes and absorbing materials was 
modelled for obtaining transmission loss (TL) characteristics by using finite element 
methods. The results obtained via numerical methods were compared with 
experiments which they had good agreements. Several experimental works were 
implemented for different methods. Calculating four-pole parameters is the most 
common way of predicting transmission loss. Munjal et al. [6], who proposed a two-
source method for measuring the four-pole parameters of an acoustic element or 
combination of elements. 

In this study, the aim is to predict the acoustic performance of fully-filled 
perforated dissipative mufflers with extended inlet/outlet. In order to control quarter 
wave resonator frequencies, absorbing material positioned in the central region of the 
muffler. Finite element approach is applied to predict four pole parameters for various 
different combinations of mufflers to obtain transmission loss characteristics. 
Experimental studies are done to provide results of the finite element method 
approach. 

THEORY 
The system to be dealt with in the present study is shown diagrammatically in Fig. 1. 
Let it be assumed that the radius of the inlet and outlet pipes is r, whereas the length 
and radius of the chamber is L and R, respectively. Also, the thickness of the fiber 
material is t. The linear wave equation for a perfect gas with no damping, 
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where P is the sound pressure and c is the speed of sound. If equation (1) is solved for 
corresponding boundary and initial conditions in the time domain, it gives P as a 
function of time and space. 

Figure 1 – Muffler with perforated pipe and porous material. 
The sound pressure assumed for time-harmonic solution is 
 i tP pe ω= . (2) 
Then the linear wave equation becomes Helmholtz’s equation as 
 2 2p k p∇ = − , (3) 
where p is in the frequency domain. For mufflers with porous materials, the 
governing equations become 
 2 2 0a a ap k p∇ + = in Ωa and 2 2 0b b bp k p∇ + = in Ωb (4) 
where Ωa and Ωa are the domains of air and bulk porous material respectively. The 
boundary conditions are 

 1p = , at the inlet,     0p
n

∂ =∂ , on rigid walls, p ikpn
∂ =∂ , at the outlet. (5) 

One-dimensional plane wave propagation is assumed at the inlet and the outlet pipes. 
Hence, at the outlet, the anechoic boundary condition identified in equation (5) is a 
rather simple form of a Robin boundary condition. The normal velocity is continuous 
and the normal pressure gradient is proportional to density ratio at the interface 
between air and porous material, thus represented as 

 , b b a
a a b b

a

p pu n u n n n
ρ
ρ

∂ ∂⋅ = − ⋅ = −∂ ∂ . (6) 

On the perforated pipe, the basic assumptions for modelling a perforated plate in an 
acoustic field are a continuous normal velocity and a discontinuous pressure through 
the pipe. The simple relation proposed by Sullivan and Crocker [7] is considered 
sufficiently accurate for usage in this paper. The dimensionless transfer impedance Zt
of a perforated plate can be approximated as follows 
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0

1 (2.4 0.02 )tZ i fcρ σ= + , (7) 

where σ is the ratio of the open area to the total area of the pipe. The pressure jump, 
∆p, normal particle velocity, un and normal sound pressure gradient relation are 
calculated by following equations, respectively. 

 0 t np cZ uρ∆ = , 0 n
p i un ρ ω∂ = −∂ . (8) 

Note that equation (7) is valid only for a perforated pipe surrounded by air, so a 
narrow air gap between the absorption material and the perforated pipe is assumed. At 
this point, following continuous space of complex functions must be introduced as 
 { }1 1

Re Im Re Im: ( ), ( )Z i H Hυ υ υ υ υ= = + ∈ Ω ∈ Ω (9) 
where H1 is the Hilbert space. The variatonal formulation of the problem is to find 
p Z∈ such that 
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where S0 is the cross-sectional area of the output pipe and Sp1 and Sp2 are surfaces of 
perforated plate. In equation (10), volume integrals (the first two terms) governing air 
and porous material, surface integrals (the next two terms) governing pressure jump 
through perforated pipe and linked the pressure in both sides and the last integral 
surface term is the Robin boundary condition for modelling anechoic termination at 
the outlet. Common Galerkin formulation method is utilized for solving the equation. 
Three-dimensional domain, Ω is divided into K tetrahedral elements. 

 1
K
j

∧
=Ω = ∪ Ω (11) 

The discreet approximation space, 1 1
hH H⊂ , is defined as 

 { }1
Re Im Re 2 Im 2: ( ), ( )h j jH i P Pυ υ υ υ υ∧ ∧

= = + ∈ Ω ∈ Ω  (12) 

where P2 are polynomials of degree two defined on each tetrahedral elements, j. The 
global basis functions, 
 ( )n m nmXφ δ= , 1 ≤ n, m ≤ N, (13) 
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where N is the total number of global nodes in the model. X is the coordinate of each 
nodes. By using global basis functions, υ, can be 
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where ( )m mXυ υ= . Using equation (14), expand all functions to variational 
formulation, the discretized equation of linear systems of algebraic equations such 
that 
 Ap=f (15) 
where the coefficient matrix A is a sparse symmetric matrix, p is the sound pressure 
amplitude vector of nodal values and f is forcing function vector of nodal values. In 
this equation f is only a non-zero value at the inlet pipe according to Dirichlet 
boundary conditions. All these values are complex numbers at all and can be written 
 +Re Im Re Im Re Im(A +iA )(p +ip )=f if (16) 
Equation (16), can be written in matrix form as 

      
=         

Re Im Re Re

Im Re Im Im

A A p f
A -A -p f (17) 

which above equation is solved by several iterative solvers developed before. The 
components of the coefficient matrix A, Amn are 
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When applying Equation (18) to each components to evaluate the global matrix A, all 
local coordinates (x,y,z) transformed into global coordinate system (ξ1,ξ2,ξ3). For 
tetrahedral elements, the coordinates of reference elements are functions of the 
elemental basis functions, hi(ξ1). The components of the elemental matrix Â, Âij for 
an internal element, 

∧Ω can be written as 
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which 1 ≤ i, j ≤ 10 interval. Elemental integration is numerically performed by 
Gaussian quadrature which is defined on the reference element. 

In this study, the finite element method approach is done by MSc.Actran that is 
a commercial package program which has a wide library of acoustic elements and 
materials. Porous media and perforated pipe can be modelled in the program. 

EXPERIMENTAL SETUP 
The common procedure for measuring the transmission loss (TL) of a muffler is to 
determine the incident power by decomposition theory and the transmitted power by 
the plane wave approximation assuming an anechoic termination at the outlet. 
Unfortunately, it is difficult to determine a fully anechoic termination. Furthermore, 
there are two alternative measurement techniques which are considered not require an 
anechoic termination: the two load method and the two source method. In this paper 
two-load method is applied. An acoustical element, like a muffler, can also be 
modelled to obtain four-pole parameters. Assuming plane wave propagation at the 
inlet and outlet, the four-pole method is to relate the pressure and velocity (particle, 
volume or mass) at the inlet to that at the outlet. Using the four-pole parameters, the 
transmission loss of a muffler can also be readily calculated. The two-load method, 
which is based on transfer matrix method, can be modelled by its four-pole 
parameters, as show in Figure 2. 

Figure 2 – Four-pole parameters for experimental setup. 
The transfer matrix is shown below 
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where α(ω), β(ω), γ(ω), δ(ω) are the four-pole parameters; A1(ω), B1(ω) and A2(ω), 
B2(ω) are the pressure and velocities at the inlet and outlet, respectively. Application 
is based on the transfer matrix method, which muffler must be placed like in the 
Figure 3. Also, by changing the end condition (acoustic impedance) with two separate 
measurements. Generally, two loads can be two different length pipes, a single pipe 
with and without absorbing material or even two different mufflers. In this paper, two 
loads method were achieved by a pipe with and without absorbing material. Thus, 
transmission loss is calculated by 
 )(20)( 10 ωαω LogTL = (21) 
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Figure 3 – Impedance Tube for experiments to calculate transmission loss. 

RESULTS 
Experimental muffler has dimensions of a simple expansion chamber with perforated 
pipe and acoustic fiber lining of rock wool material. The radius of the inlet and outlet 
pipes is r = 2.7 cm, whereas the length and radius of the chamber is L = 25 cm and R
= 10 cm, respectively. Also, the thickness of the rock wool is t = 3.5 cm. The rock 
wool flow resistivity equals 13813 MKS rayls/m. The frequency range of interest is 
between 1-3200 Hz both in numerical and experimental evaluations. The element size 
for the finite element domain was chosen to provide a minimum 6 elements per 
wavelength. It has 101000 elements for cavity domain and 26000 elements for porous 
material domain. MSc.Actran evaluates this type of a muffler within 17 minutes. 

 

(a)         (b) 
Figure 4 –Transmission loss of mufflers with perforated pipe, (a) numerical and 

experimental results, (b) different perforation ratios. 
 
Transmission losses of mufflers with and without porous media are given in the 
Figure 4 and 5, respectively. To provide the FEM results, experimental calculation is 
given with these figures. It can be seen from figures that the experimental and 
numerical calculations shows good agreement both for perforated mufflers and 
perforated mufflers with porous material. Some mismatch within the transmission 
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loss values around 1.6 kHz frequencies in Figure 5 can be negligible because of 
mathematical modelling. The mathematical model assumes no absorption in air and a 
perfect reflection on the walls which is not accurate. Another reason is that, the 
porous material and the perforated plates are approximated by complex acoustic 
impedance evaluated using rather simple empirical relations. This may explain the 
errors in the results. 
 

(a)         (b) 
Figure 5 –Transmission loss of mufflers with perforated plate and porous media, (a) 

numerical and experimental results, (b) different perforation ratios. 
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