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Abstract
This paper deals with the attenuation problem of harmonic vibrations in nonlinear
mechanical systems by using active vibration absorbers and without explicitly employing
vibration measurements. The algebraic identification scheme is applied for the on-line
estimation of the excitation frequency and amplitude of exogenous vibrations affecting
the primary mechanical system. The algebraic identification is then combined with a
certainty equivalence differential flatness based controller to guarantee the asymptotic
output tracking of an off-line and pre-specified output trajectory and, simultaneously,
the asymptotic cancellation of the harmonic vibrations. Some numerical results show the
dynamic and robust performance of the algebraic identification and the active vibration
control.

INTRODUCTION

Many engineering systems undergo undesirable vibrations. Vibration control in mecha-
nical systems is an important problem, by means of which vibrations are suppressed or
at least attenuated. In this direction it has been common the use of passive and active
dynamic vibration absorbers.

A dynamic vibration absorber is an inertia member coupled to a vibrating me-
chanical system by suitable linear and nonlinear coupling members (e.g., springs and
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dampers). For the passive case, the absorber only serves for a specific excitation fre-
quency and stable operating conditions, but it is not recommended for variable frequen-
cies and uncertain system parameters. An active dynamic vibration absorber achieves
better dynamic performance by controlling actuator forces depending on feedback and
feedforward information of the system obtained from sensors.

To cancel the exogenous harmonic vibrations on the primary system, the dynamic
vibration absorber should apply an equivalent reaction force to the primary system
equal and opposite to the exciting force causing the vibrations. This means that the
vibration energy injected to the primary system is transferred to the absorber through
the coupling elements. For more details about dynamic vibration absorber we refer to
Korenev and Reznikov [1] and references therein.

This paper deals with the attenuation problem of harmonic mechanical vibra-
tions in nonlinear mechanical systems by using active vibration absorbers and without
employing vibration measurements. On-line algebraic identification is applied for the
on-line estimation of the frequency and amplitude of exogenous vibrations affecting the
nonlinear vibrating mechanical system. The proposed results are strongly based on
the alegraic approach to parameter identification in linear systems reported by Fliess
and Sira-Ramírez [3], which employ differential algebra, module theory and operational
calculus.

An important property of the algebraic identification is that the parameter and
signal identification is not asymptotic but algebraic, that is, the parameters are com-
puted as fast as the system dynamics is being excited by some external input or changes
in its initial conditions, in contrast to the well-known persisting excitation condition and
complex algorithms required by most of the traditional identification methods (Ljung
[5] and Soderstrom [6]).

The algebraic identification is combined with a certainty equivalence differential-
flatness based controller for asymptotic output tracking of an off-line and pre-specified
output trajectory and cancellation of harmonic perturbations affecting directly the me-
chanical system. Numerical results show the dynamic and robust performance of the
algebraic identification and the active vibration control scheme.

Algebraic identification has already been employed for parameter and signal es-
timation in linear vibrating mechanical systems by Beltrán-Carbajal, Silva-Navarro and
Sira-Ramírez [2]. Here numerical and experimental results show that the algebraic iden-
tification provides high robustness against parameter uncertainty, frequency variations,
small measurement errors and noise.

AN ACTIVE VIBRATION CONTROL SCHEME

Consider the nonlinear vibrating mechanical system shown in Fig. 1, which consists
of an active nonlinear vibration absorber (secondary system) coupled to the perturbed
mechanical system (primary system). The generalized coordinates are the displacements
of both masses, x1 and x2, respectively. In addition, u represents the (force) control
input and f an exogenous harmonic perturbation. Here m1 and c1 denote mass and
linear viscous damping on the primary system; similarly, m2 and c2 denote mass and
viscous damping of the active vibration absorber.

The two mechanical springs have the following nonlinear stiffness function

F (x) = kx+ kpx
3

where x is the spring deformation, and k and kp denote the linear and cubic stiffness,
respectively.
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Figure 1: Schematic diagram of the vibrating mechanical system.

The mathematical model of the two degree-of-freedom system is described by two
coupled nonlinear differential equations

m1ẍ1 + k1x1 + k1px
3
1 + c1ẋ1 − k2 (x2 − x1)− k2p (x2 − x1)

3 = f (t)

m2ẍ2 + k2 (x2 − x1) + k2p (x2 − x1)
3 = u (t)

(1)

where f (t) = F0 sinωt. In order to simplify the analysis we have assumed that c1 ≈ 0
and c2 ≡ 0.

Defining the state variables as z1 = x1, z2 = ẋ1, z3 = x2 and z4 = ẋ2, one obtains
the following state space description

ż1 = z2
ż2 = − k1

m1
z1 − k1p

m1
z31 +

k2
m1
(z3 − z1) +

k2p
m1
(z3 − z1)

3 + 1
m1

f (t)
ż3 = z4
ż4 = − k2

m2
(z3 − z1)− k2p

m2
(z3 − z1)

3 + 1
m2

u

(2)

In what follows we will apply the algebraic identification method to estimate the har-
monic force f(t) and design an active vibration controller based on state feedback and
feedforward information obtained from f(t).

Differential flatness-based control

The system (2) is differentially flat, with flat output given by y = z1 and further denoted
as L. Then, all the state variables and the control input can be parameterized in terms
of the flat output L = z1 and a finite number of its time derivatives (see Fliess et al.
[4]).

Indeed, under the assumption of perfect knowledge of L, the second equation in
(2) actually represents a reduced cubic algebraic equation from where the mass position
of the vibration absorber z3 can be obtained. The only real root of such a cubic equation
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is readily obtained as

z3 = L+ 1
6k2p

∙
k22p

µ
108d+ 12

q
3
4k32+27k2pd

2

k2p

¶¸1/3
− 2k2

∙
k22p

µ
108d+ 12

q
3
4k32+27k2pd

2

k2p

¶¸−1/3 (3)

with d = m1L̈+k1L+k1pL
3−f (t). Note that the differentially parameterized expression

for z3, in (3), implies that its second time derivative, ż4, can be expressed as a function

denoted by φ
³
L, L̇, L̈, L(3), L(4), f, ḟ , f̈

´
. Then, from the fourth equation in (2), the

control input, u, can be parameterized in terms of differential functions of L as

u = m2ż4 + k2

³
z3

³
L, L̈, f

´
− L

´
+ k2p

³
φ
³
L, L̇, L̈, L(3), L(4), f, ḟ , f̈

´
− L

´3
(4)

Therefore, all system variables are expressible as differential functions of the flat output.
From (4) one obtains the following differential flatness-based controller to asymp-

totically track a desired reference trajectory L∗ (t):

u = m2ż4 + k2

³
z3

³
L, L̈, f

´
− L

´
+ k2p

³
φ
³
L, L̇, L̈, L(3), v, f, ḟ , f̈

´
− L

´3
v = (L∗)(4) (t)− β3

h
L(3) − (L∗)(3) (t)

i
− β2

h
L̈− L̈∗ (t)

i
− β1

h
L̇− L̇∗ (t)

i
− β0 [L− L∗ (t)]

(5)

The use of this controller yields the following closed-loop dynamics for the trajectory
tracking error e = L− L∗ (t) as follows

e(4) + β3e
(3) + β2ë+ β1ė+ β0e = 0 (6)

Therefore, selecting the design parameters βi, i = 0...3, such that the associated char-
acteristic polynomial for (6) be Hurwitz, one guarantees that the error dynamics be
globally asymptotically stable.

It is evident, however, that the controller (5) requires the perfect knowledge of
the exogenous signal f(t) and its time derivatives up to second order, revealing sev-
eral disadvantages with respect to other control schemes. Nevertheless, one can take
advantage of the algebraic identification methods: i) to estimate the force f(t) and re-
construct an estimated signal f̂(t), or ii) when the structure of the signal is well-known
(e.g., harmonic force f(t) = F0 sinωt) to estimate its associated parameters (F0, ω) and
then reconstruct it. As a consequence, the combination of the feedback and feedforward
control (5) with algebraic identification methods will improve the robustness properties
against variations on the amplitude and/or excitation frequency.

ALGEBRAIC IDENTIFICATION OF HARMONIC
VIBRATIONS

Consider the nonlinear mechanical system (1) with perfect knowledge of its system
parameters and, that the whole set of state vector components and the control input u
are available for the identification process of the harmonic signal f(t) = F0 sinωt. In
this case we proceed to synthesize algebraic identifiers for the excitation frequency ω
and amplitude F0. For simplicity, we also suppose that c1 = c2 ≡ 0.
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Identification of the excitation frequency ω

Consider the second equation in (2)

m1
d

dt
z2 + ϕ = F0 sinωt (7)

where
ϕ = k1z1 + k1pz

3
1 − k2 (z3 − z1)− k32p (z3 − z1)

3

In order to eliminate the presence of the amplitude F0, we differentiate the equation (7)
twice with respect to time t, resulting

d2

dt2

µ
m1

d

dt
z2 + ϕ

¶
= −F0ω2 sinωt (8)

Multiplication of (7) by ω2 and adding it to (8), leads to

ω2
µ
m1

d

dt
z2 + ϕ

¶
+

d2

dt2

µ
m1

d

dt
z2 + ϕ

¶
= 0 (9)

Multiplying (9) by the quantity t3 and integrating the result three times with
respect to time t, one gets

ω2

ÃZ (3)

t0

t3
µ
m1

d

dt
z2 + ϕ

¶!
+

ÃZ (3)

t0

t3
d2

dt2

µ
m1

d

dt
z2 + ϕ

¶!
= 0 (10)

where
³R (n)

t0
η (t)

´
are iterated integrals of the form

R t
t0

R σ1
t0
· · ·
R σn−1
t0

ϕ (σn) dσn · · · dσ1,

with
³R

t0
η (t)

´
=
R t
t0
η (σ) dσ and n a positive integer.

Using integration by parts, one gets

ω2
³
m1

³R (3)
t0

t3 d
dtz2

´
+
³R (3)

t0
t3ϕ
´´
+m1

³R (3)
t0

t3 d3

dt3
z2

´
+
³R (2)

t0
t3 d

dtϕ
´
− 3

³R (3)
t0

t2 d
dtϕ
´
= 0

(11)

where ³R (3)
t0

t3 d
dtz2

´
=
³R (2)

t0
t3z2

´
− 3

³R (3)
t0

t2z2

´³R (3)
t0

t3 d3

dt3
z2

´
= t3z2 − 9

³R
t0
t2z2

´
+ 18

³R (2)
t0

tz2

´
− 6

³R (3)
t0

z2

´
d
dtϕ = k1z2 + 3k1pz

2
1z2 −

h
k2 + 3k2p (z3 − z1)

2
i
(z4 − z2)

Finally, solving for the excitation frequency ω in (11) leads to the following on-line
algebraic identifier for the excitation frequency:

ω2e = −
N1(t)

D1(t)
, ∀t ∈ (t0, t0 + δ0] (12)

where
N1(t) = m1

³R (3)
t0

t3 d3

dt3
z2

´
+
³R (2)

t0
t3 d

dtϕ
´
− 3

³R (3)
t0

t2 d
dtϕ
´

D1(t) = m1

³R (3)
t0

t3 d
dtz2

´
+
³R (3)

t0
t3ϕ
´

Therefore, when the condition D1(t) 6= 0 be satisfied at least for a small time interval
(t0, t0+δ0] with δ0 > 0, we can find from (12) a closed-form expression for the estimated
excitation frequency.
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Identification of the amplitude F0

To synthesize an algebraic identifier for the amplitude F0 of the harmonic vibrations
acting on the mechanical system (1), consider again the equation (7).

Multiplying (7) by the quantity t and integrating the result once with respect to
time t, we have that

m1

R t
t0

¡
t ddtz2

¢
dt+

R t
t0
(tϕ) dt = F0

R t
t0
(t sinωt) dt (13)

By integrating by parts, the equation (13) is equivalent to

m1

µ
(t− t0) z2 −

Z t

t0

z2dt

¶
+

Z t

t0

(tϕ) dt = F0

Z t

t0

(t sinωt) dt (14)

At this point we assume that the excitation frequency has been previously estimated,
during a small time interval (t0, t0 + δ0], using (12). The estimated result is therefore
ωe(t0+δ0). After the time t = t0+δ0 it is started the on-line identifier for the amplitude,
obtained from (14) as follows

F0e =
N2(t)

D2(t)
(15)

where
N2 (t) = m1z2∆t+

R t
t0+δ0

(tϕ−m1z2) dt

D2 (t) =
³R t

t0+δ0
t sin [ωe(t0 + δ0)t] dt

´
Such an estimation is valid if the condition D2(t) 6= 0 holds for a sufficiently small time
interval [t0 + δ0, t0 + δ1] with δ1 > δ0 > 0.

AN ADAPTIVE-LIKE CONTROLLER WITH
ALGEBRAIC IDENTIFICATION

The differential flatness based active vibration control (5) can be combined with the
on-line identification of harmonic vibrations (12)-(15), resulting the following certainty
equivalence feedback control law

u = m2ż4 + k2

³
z3

³
L, L̈, fe

´
− L

´
+k2p

³
φ
³
L, L̇, L̈, L(3), L(4), fe, ḟe, f̈e

´
− L

´3
(16)

where fe(t) = F0e sinωet. Note that, in accordance with the algebraic identification
approach, providing fast identification for the parameters associated to the harmonic
vibration (ω, F0) and, as a consequence, fast estimation of this perturbation signal,
the proposed controller (16) resembles an adaptive control scheme. From a theoretical
point of view, the algebraic identification is instantaneous (see Fliess and Sira-Ramírez
[3]). In practice, however, there are modelling and computational errors as well as
other factors that can inhibit the precise algebraic computation. Fortunately, the iden-
tification algorithms and closed-loop system are robust against such difficulties (see
Beltrán-Carbajal, Silva-Navarro and Sira-Ramírez [2]).



ICSV13, July2-6, 2006, Vienna, Austria

SIMULATION RESULTS

Some simulations were performed to show the on-line identification of harmonic vi-
brations and its use in an adaptive-like vibration control (5). The parameters for the
ECPTM rectilinear control system are given in Table I.

Table I: System parameters.
m1 = 10kg m2 = 2kg
k1 = 1000N/m k2 = 200N/m
k1p = 100N/m k2p = 50N/m

3

The controller (5) was specified such that one could observe how the active vibration ab-
sorber cancels the vibrations on the primary system and the asymptotic output tracking
of an off-line and prespecified reference trajectory, towards the desired equilibrium.

The planned trajectory for the flat output y = z1 is given by

L∗ (t) =

⎧⎨⎩ 0 para 0 ≤ t < T1
ψ (t, T1, T2) L̄ para T1 ≤ t ≤ T2

L̄ para t > T2

(17)

where L̄ = 0.01 [m], T1 = 5 [s], T2 = 10 [s] and ψ (t, T1, T2) is a Bézier polynomial, with
ψ (T1, T1, T2) = 0 and ψ (T2, T1, T2) = 1, described by

ψ (t) =

µ
t− T1
T2 − T 1

¶5
[r1 − r2

µ
t− T1
T2 − T 1

¶
+ r3

µ
t− T1
T2 − T 1

¶2
− ...− r6

µ
t− T1
T2 − T 1

¶5
]

with r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700, r6 = 126.
In Fig. 2 is depicted the identification process of the harmonic vibrations f(t) =

2 sin (12t) [N] and the dynamic behavior of the adaptive-like control scheme (16). We can
observe a good and fast estimation (t << 0.1 s) and how the active vibration absorber
dissipates all the vibrating energy H1 and allows that the output follows the desired
reference trajectory given by (17).

The controller parameters {β0, β1, β2} were chosen to be in correspondence with
the fourth order closed-loop tracking error dynamics characteristic polynomial:¡

s2 + 2ζωns+ ω2n
¢2
= s4 + β3s

3 + β2s
2 + β1s+ β0

with ζ = 0.7071 y ωn = 10.

CONCLUSIONS

The design of active dynamic vibration absorbers is performed by using feedback and
feedforward control. The differential flatness property of the mechanical system is em-
ployed to synthesize an active vibration controller, simplifying the trajectory tracking
problem with the application of a static state feedback controller based on linear pole
placement and perturbation feedforward. Since this active controller requires informa-
tion of the exogenous harmonic vibrations, a novel algebraic identification approach is
proposed for the on-line estimation of the frequency and amplitude of vibrations affect-
ing the mechanical system. This approach is quite promising, in the sense that from
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Figure 2: Controlled system responses and identification of frequency and amplitude of
f(t) = F0 sinωt.

a theoretical point of view, the algebraic identification is practically instantaneous and
robust with respect to parameter uncertainty, frequency variations, small measurement
errors and noise. Thus the algebraic identification is combined with the differential flat-
ness based controller to get an adaptive-like controller, which results quite precise, fast
and robust against parameter uncertainty and variations on the excitation frequency
and amplitude of the exogenous perturbations.
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