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Abstract
In this paper is addressed the problem of semiactive balancing control of a Jeffcott-like
rotor system on journal bearings, one of them supported on radial Magneto-Rheological
(MR) dampers. The mathematical model of the rotor system results from a Jeffcott
model and the dynamics associated to the MR dampers, whose properties depend on the
current inputs (control actions). There are different models for MR dampers proposed
in the literature (Bingham, Bouc-Wen, Spencer, Choi-Lee-Park, etc.), most of them
experimentally validated. For control purposes we use the Choi-Lee-Park polynomial
model, which is quite consistent with the nonlinear and complex hysteresis damper
models and also simplifies the physical implementation. The semiactive control scheme
is then analyzed and synthesized to manipulate the unbalance response of the rotor
system, by means of a proper modification of the rotordynamics coefficients (damping
and stiffness). It is performed a controllability and stability analysis of the overall rotor
system, in order to propose a suitable semiactive control strategy based on sliding-mode
control techniques. Some numerical simulations are included to illustrate the dynamic
performance and robustness when the rotor is started and operated over the first critical
speed.

INTRODUCTION

Vibrations caused by mass unbalance are a common problem in the rotating machinery.
The unbalance occurs when the principal axis of inertia of the rotor is not coincident
with its geometric axis. This is a result of inevitable imperfections in manufacturing
and assembly of rotors. These vibrations can cause high levels of noise and wear, and
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these may lead to failures or lost of the machine. See, e.g., Vance [8], Wowk [10], Vance
[8], Zhou and Shi [11].

Active vibration control has been an area of theoretical and experimental research
in rotating machinery, providing many advantages for the attenuation of vibration am-
plitude during run-up and coast-down through critical speeds, and minimization of sud-
den transient behavior due to rotor unbalance or parametric uncertainty. This problem
has been investigated using different devices such as magnetic bearings, active squeeze
film dampers, lateral force actuators, pressurized bearings, etc. (see, e.g., Carmignani
et al. [1], El-Shafei [4], Guozhi [3], Lum et al. [5], Zhou and Shi [11]).

Recently, many types of semiactive electrorheological (ER) or magnetorheologi-
cal (MR) dampers have been used for vibration attenuation on rotor bearing systems
(Carmignani et al. [1], El-Shafei [4], Guozhi et al. [3]). Different hysteresis models
for the ER or MR dampers have been proposed in the literature (Bingham, Bouc-Wen,
Spencer, Choi-Lee-Park, etc.), most of them theoretically and experimentally validated.
In practice the MR fluids are more attractive than ER fluids, mainly because of the
employment of low voltages and inherent higher yield strength (Spencer et al. [6]).

The objective of the present paper is to propose a semiactive balancing control
scheme for a Jeffcott-like rotor system on journal bearings, one of them supported on
two radial MR dampers. The mathematical model of the rotor system results from
a Jeffcott model and the dynamics associated to the MR dampers, whose properties
depend on the current inputs (control actions). The damping force provided by the MR
dampers is modelled via the Choi-Lee-Park polynomial model (Choi et al. [2]), which
is quite consistent with the nonlinear and complex hysteresis damper models and also
simplifies the controller design and physical implementation. The semiactive control
scheme is analyzed and synthesized to manipulate the unbalance response of the rotor
system, by means of a proper modification of the rotordynamics coefficients (damping
and stiffness), using a control scheme based on sliding-mode control techniques.

ROTOR-BEARING SYSTEM

The rigid rotor bearing system consists of a planar and rigid disk of mass m mounted
on the midspan of a shaft of negligible mass and supported on a journal bearing (left)
and a journal bearing (right) with two radial MR dampers and spring bearings (see Fig.
1). Because of the rotor unbalance, the mass center is not located at the geometric
center of the disk S but at the point G (center of mass of the unbalanced disk) and the
distance between these two points is denoted by the eccentricity e. The angular speed
of the rotor is represented by ω.

Rotor-bearing model

A simplified model for the rigid rotor bearing system can be obtained as a Jeffcott-like
rotor system with MR dampers, as follows (see Vance [8])

mẍ+ cxẋ+ kxx+ FMRx = meω2 cosωt (1)

mÿ + cyẏ + kyy + FMRy = meω2 sinωt (2)

where x and y are the radial displacements of the disk, m is the unbalance mass, e the
disk eccentricity, and cx and cy are radial viscous dampings on the journal bearings.
Moreover, the radial stiffnesses kx and ky are computed as the equivalent stiffness of
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Figure 1: Schematic diagrams. (a) Rotor bearing system supported on MR damper and
springs. (b) Disk with unbalance.

the shaft (ks = 48EIs/l3) and linear springs kr used in series with each MR damper, to
compensate the load equilibrium positions, in such a way that ki = ks+kri, i = x, y. The
MR damping forces are described by FMRx and FMRy, each corresponding to individual
and independent radial control forces, which will be controlled through manipulation
of their own electrical currents. Moreover, it is assumed that the angular speed ω
is constant; otherwise, the dynamics associated to the angular speed leads to a three
degrees-of-freedom nonlinear model.

The system parameters are given in Table I.

Table I. Simulation parameters for the rotor-bearing system.
Shaft diameter D 0.010m
Disk mass m 0.650kg
Unbalance eccentricity e 2.47× 10−5m
Shaft length l 0.600m
Journal viscous dampings cx, cy 10.4N/(m/ s)
Shaft stiffness ks 23.017 kN/m
Radial spring stiffness krx, kry 801.87N/m
Young’s modulus (steel type 4140) E 211GPa

MR damper model

The MR fluids are smart materials that respond well to an applied magnetic field,
leading to an important change in their rheological behavior (viscosity and stiffness).
The viscosity and stiffness changes are continuous and reversible, which makes feasible
the application of MR dampers for vibration control (Spencer et al. [6]). The passive
nature of the MR dampers limit their practical use to semiactive vibration control,
although this is sufficient to improve the rotor bearing system response and extend the
stability thresholds. Specifically, via the application of a feedback control to manipulate
the electrical currents of two radial dampers (directions X and Y ) one can control two
independent damping forces to attenuate the unbalance system response.

For simplicity in the control synthesis, we consider the Choi-Lee-Park polynomial
model for the MR dampers (see Choi et al. [2] and references therein). The Choi-
Lee-Park polynomial model is able to predict the field-dependent damping force and
hysteresis behavior of MR dampers. An schematic diagram of the polynomial model
is shown in Fig. 2. This simple model divide the hysteresis loop in two regions, for
positive acceleration (lower loop) and negative acceleration (upper loop), and then the
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Figure 2: Schematic diagram of the polynomial model of a MR damper proposed by
Choi et al. [2].

lower and upper loops are fitted by polynomials to experimental results. The damping
force for the MR damper is now expressed by the polynomial

FMR(v) =
nX
i=0

aiv
i, n = 6 (3)

where v is the piston velocity and ai, i = 1, ..., 6, are coefficients determined from a
proper curve fitting. The order of the polynomials depend on the measured hysteresis
behavior as well as the size and excitation of the MR damper. The coefficients ai are
described in terms of their linear approximation with respect to the intensity of the
electrical current I as follows

ai = bi + ciI, i = 1, ..., 6 (4)

Therefore, the damping force (3) can be specified as

FMR(v, I) =
nX
i=0

(bi + ciI) v
i, n = 6 (5)

where the coefficients bi and ci are independent from the input current I. In our case we
consider two identical MR dampers RD-1097-01 and the rheonetic wonder box device
controller kit RD-3002-03, both manufactured by Lord Corporation

R°
. In this case the

polynomials with best fitting to the experimental results are of 2nd order (n = 2), whose
coefficients are given in Table II.

Table II. Polynomial coefficients bi and ci.
Index Positive acceleration v̇ > 0 Negative acceleration v̇ < 0
i bi ci bi ci
0 0.403 2.928 0.5426 −3.105
1 −18.3 1156 −18.549 1161
2 19.01 −561.3 8.6212 −372.5

In order to capture the switching values for the coefficients bi and ci, in terms of
the acceleration v̇, the damping force (5) is rewritten in the following form

FMR(v, I) =
nX
i=0

(b∧i + c∧i I)v
i, n = 2 (6)
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where the general coefficients (b∧i , c
∧
i ) are expressed with respect to the positive accel-

eration (b+i , c
+
i ) and negative acceleration (b

+
i , c

+
i ) coefficients,

c∧i =
(c+i + c−i ) +

¯̄
c+i − c−i

¯̄
sign(v̇)

2
, b∧i =

(b+i + b−i ) +
¯̄
b+i − b−i

¯̄
sign(v̇)

2

Note that, by assuming small displacements, the two radial MR dampers (FMRx,FMRy)
in the rotor bearing system (1)-(2) can be independently controlled from their current
inputs Ix and Iy.

Rotor-bearing system with two MR dampers

The 2 degree-of-freedom overall rotor-bearing system dynamics (1)-(2), assuming two
identical radial MR dampers FMRx and FMRy (6), is described by

mẍ+ cxẋ+ kxx+
nX
i=0

b∧i ẋ
i = meω2 cosωt−

Ã
nX
i=0

c∧i ẋ
i

!
Ix (7)

mÿ + cyẏ + kyy +
nX
i=0

b∧i ẏ
i = meω2 sinωt−

Ã
nX
i=0

c∧i ẏ
i

!
Iy (8)

where Ix and Iy are the current control inputs. It is evident that, from the switching
characteristics in the coefficients (b∧i , c

∧
i ), the control system (7)-(8) is highly nonlinear

and nonsmooth, which complicates the synthesis of vibration controllers. It is possible,
however, to prove the local controllability, about equilibrium positions, of system (7)-(8)
from the two current inputs.

An analysis of the rotor-bearing system (7)-(8) reveals that the average equilib-
rium displacements, for constant currents, are given byµ

x̄ = −b
∧
0 + c∧0 Ix

kx
, ȳ = −b

∧
0 + c∧0 Iy

ky

¶
(9)

Simulation results. Consider the rotor-bearing system (7)-(8) with parameters in
Tables I and II. The first critical speed is computed as ωn = 191. 43 rad/ s = 1828rpm.
The initial conditions are set to x(0) = y(0) = −10−4m and ẋ(0) = ẏ(0) = 0m/ s. In
Fig. 3a is shown the dynamic behavior of the rotor-bearing system for three different
constant current inputs Ix ∈ {0, 5, 10}mA and constant angular speed ω = 1.5ωn =
287.15 rad/ s = 2742.1rpm. It is evident the attenuation of the system response when
the current input Ix is increased, property used to control the balancing response. An
orbit x(t) vs y(t) when Ix = 100mA is described in Fig. 3b.

SEMIACTIVE VIBRATION CONTROL

Consider again the rotor-bearing system (1)-(2). For control purposes it is assumed the
inverse model for the MR damping forces in (6), such that the current control inputs
are obtained from

Ii =

FMRd −
nX
i=0

b∧i v
i

nX
i=0

c∧i v
i

, i = x, y, n = 2 (10)
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Figure 3: Open-loop dynamics of the rotor-bearing system with MR dampers: (a)
displacement x(t) in direction X for Ix ∈ {0, 5, 10}mA, (b) Orbit y(t) vs x(t) when

Ix = 100mA.

It is important to remark that, in general, there is no singularity in (10) because c∧0 6= 0.
Now, the semiactive vibration control scheme is formulated as follows. First, it is

designed a stabilizing vibration control law through the two independent MR damping
forces, FMRx and FMRy, for each degree-of-freedom in the rotor-bearing system (1)-(2).
Second, the control forces are considered as the desired damping forces FMRd for the
determination of the actual current control inputs from (10). This strategy is repeated
until the unbalance response converges into a prespecified region.

Two sliding-mode controllers are then applied to achieve the vibration attenuation
of the unbalance response (see Utkin [7]). This is a robust control strategy against
exogenous perturbations and parameter uncertainties. Thus, the two sliding surfaces
are defined by

σx(x− xd) = αx(x− xd) + ẋ (11)

σy(y − yd) = αy(y − yd) + ẏ (12)

where xd and yd are constant references (typically xd = yd ≡ 0 to center the orbit at the
origin, but these can be used to compensate the average equilibrium (9)), respectively.
Here, αx and αy are design control parameters to be selected to get the desired dynamic
behavior. The sliding-mode controllers are synthesized as follows

FMRx = (αxm− cx)ẋ− kxx−mMx signσx(x− xd) (13)

FMRy = (αym− cy)ẏ − kyx−mMy signσy(y − yd) (14)

where Mx and My are design parameters for the discontinuous control actions. These
damping forces are considered as desired forces in (10). Due to physical limitations on
the MR dampers, the resulting control currents are saturated to values between 0A and
0.5A and switching frequencies below 1 kHz.
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SIMULATION RESULTS

Consider the system parameters in Tables I and II. The design parameters for the sliding-
mode controllers are selected as αx = αy = 100, Mx = My = 10 and xd = yd = 0m.
The initial conditions are set to x(0) = y(0) = −10−5m and ẋ(0) = ẏ(0) = 0m/ s.

In Figs. 4 and 5 are shown the overall dynamic performance of the closed-loop
system for a constant speed ωn = 191. 43 rad/ s = 1828rpm. The unbalance response is
stabilized and highly attenuated with small damping forces. It can be proved the robust
behavior against variations on the operating speed ω and the unbalance parameters, even
during run-up and coast-down through the first critical speed.
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Figure 4: Closed-loop system response using sliding-mode controllers with saturated
control currents.

CONCLUSIONS

The semiactive balancing control of a Jeffcott-like rotor-bearing system with MR dampers
is addressed. The proposed control scheme combines two radial MR dampers and springs
to support one journal bearing of the rotor system. The rheological properties are con-
trolled through current control inputs (electromagnetic field), using sliding-mode con-
trollers, to get the desired stability and frequency response on the rotor-bearing system.
Further work is being conducted to obtain the experimental validation on a realistic
rotor-bearing system with MR dampers.
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