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Abstract

The paper deals with the identification, analysis and synthesis of a passive and active
vibration absorber connected to a mechanical system to attenuate harmonic vibrations
with multiple frequency components. The primary system is coupled to a mass-spring
vibration absorber and also to a cantilever beam absorber. The overall mechanical sys-
tem is modeled through modal identification techniques, whose parameters are necessary
for the passive designs. Because the overall system is made active with the addition
of an external control force, then the open loop dynamics is properly modified with a
feedback controller, synthesized via modal control techniques, to improve its robustness
properties with respect to frequency variations, inclusive for simultaneous resonant fre-
quencies. Some numerical and experimental results are provided to illustrate the dynamic
performance of the passive and active vibration control system on a mechanical platform.

INTRODUCTION

Vibration absorbers are a valuable tool used to suppress or attenuate vibrations due to
excitation in mechanical systems. There are basically three vibration control methods
described as passive, semi-active and active vibration control. Passive vibration control
relies on the addition of stiffness and damping to the system to reduce the steady state
response, and it is useful for specific excitation frequency and stable operating condi-
tions, however, it is not robust for variable excitation frequency and uncertainty on the
system parameters. Semi-active vibration control deals with adaptive spring or damper
characteristics, which are tuned according to the current operating conditions. Active
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vibration control achieves the better performance, by adding degrees of freedom (DOF)
to the system and controlling with actuator forces according to feedback and feedforward
information of the real system obtained from sensors. See [3], [2], [7].

This paper deals with tow passive and active vibration absorbers connected to a
mechanical system to attenuate harmonic vibrations with multiple frequency components.
The primary system is coupled to a mass-spring vibration absorber and also to a flexible
cantilever beam absorber. The overall mechanical system is modelled and validated
using modal identification techniques, for an equivalent three DOF, whose parameters
are necessary for the passive designs. Because the overall system is made active with the
addition of an external control force, then the open loop dynamics is properly modified
with a state feedback modal control to improve its robustness properties with respect to
frequency variations or simultaneous resonant frequencies.

SYSTEM DESCRIPTION

A model of a single DOF mechanical system coupled to a mass-spring passive vibration
absorber and a flexible cantilever beam vibration absorber is shown in Fig. la. The
experimental setup is a rectilinear plant (Model 210a) provided by Educational Con-
trol Products® with additional parts (see Fig. 1b). This mechanical system consists of
two mass carriages (mi,mg) interconnected by bidirectional linear springs (denoted by
k1,k2). Each mass carriage suspension has anti-friction ball bearing systems and, there-
fore, the linear dashpots (cj,c2) are included only to describe the small (linear) viscous
dampings. The control force is represented by wu(t), which can directly push the mass
mg to satisfy some desired control objectives (e.g., trajectory tracking and disturbance
attenuation). This control force is obtained from a brushless-type servo motor connected
to a pinion-rack mechanism. The underactuated mass carriage m; is directly affected
by an exogenous force F(t) = Fysin(wt), generated from a small shaker connected to
the carriage. In both mass carriages there exist high resolution optical encoders to mea-
sure their actual positions via cable-pulley systems. The velocities and accelerations are
numerically approximated. The signal and control processing are obtained through a
high-speed DSP board into a PC running under Windows XP© and Matlab/Simulink®.
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Figure 1: Mechanical syste(frz with mass-spring absorber an(c?)cantilever beam absorber.
(a) Schematic diagram, and (b) Experimental platform ECP™,

The primary and the two secondary subsystems are composed by the linear ele-
ments (mag, co, ka), (m1,c1,k1) and (ms, k3), respectively. The undesirable vibrations on
the mass carriage my are produced by the action of the harmonic force F(t) = Fp sin wt.
The cantilever beam absorber is rigidly mounted on the primary system, and is used in
combination with the mass-spring passive absorber to simultaneously attenuate several
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frequency components on the excitation force as well as improve the overall system dy-
namics. Moreover, the inclusion of the control force u(t) leads to an active vibration
control scheme, which will be properly designed through modal identification and control
techniques.

MODELLING OF THE MECHANICAL SYSTEM

A flexible cantilever beam is a distributed absorber modelled by partial differential equa-
tions. This kind of beam absorber has been analyzed as a discretized one DOF nonlinear
vibration absorber to compensate harmonic forces acting on a single DOF mass-spring
primary system ([6], [1]). The first mode of the cantilever beam can be easily modelled as
an equivalent mass-spring system and, more realistically, with the application of modal
analysis techniques. Here it is considered a single DOF mass-spring-dashpot primary sys-
tem (m1,c1, k1) connected to a mass-spring-dashpot passive absorber (mg, ca, k2). Over
the primary system is mounted a flexible cantilever beam absorber, with equivalent tip
mass m3 and equivalent stiffness k3 ~ 3EI /I3, to describe approximately the first linear
mode or horizontal motion of the mass ms. The cantilever beam absorber can contribute
with additional nonlinear coupling terms and more interesting phenomena.

The equations of motion of the discretized three DOF mechanical system, using
Euler-Lagrange equations, are obtained as follows

miZy + c1d + c3(21 — 3) + iz + ka(x1 — x2) + k3(z1 —x3) = F(t)
mada + cady — ka(z1 — x2)
mais — c3 (41— &3) — k3(v1 —a3) = 0 (3)

I
g
—~
~
~—
—~
N
~

where x1, 9 and x3 are horizontal displacements of the masses m1, mo and ms, respecti-
vely. The exogenous harmonic force is described by F(t) = Fjsinwt, with amplitude Fj
and excitation frequency w. There is an external force control u(t) acting on the second
subsystem (2), which will serve as an active control force to improve the robustness of the
system dynamics against parameter and frequency variations. The overall system (1)-(3)
can be clearly distinguished as a multi-mass vibration absorber, able to attenuate ex-
ternal forces F' with multiple excitation frequencies. It can be shown that system (1)-(3)
is completely controllable from u and, therefore, stabilizable with linear control laws, as
well as completely observable from the displacement x1. Moreover, in presence of viscous
dampings the open loop dynamics is asymptotically stable.
The system equations (1)-(3) can be compacted in the standard form

M (t) + Cx(t) + Kx(t) = £(£) + u(t) (4)

where x € R? denotes the generalized coordinate vector, and f € R? and u € R? are the
perturbation and control force vectors, in such a way that

[y F(t) 0 miy 0 0
X = o |, f= 0 ,u= | u(t) [t,M=| 0 mg 0 [,
T3 0 0 0 0 ms3
ci+ecz 0 —c3 ki +ke+ ks —ka —k3
C = 0 ca 0 , K= —ko ko 0
—C3 0 C3 —/{3 0 kg

where M, C and K are the mass, damping and stiffness matrices, respectively.
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PARAMETER IDENTIFICATION AND VALIDATION

In order to estimate the open-loop system parameters and validate the mathematical
model, a linear sine sweep was performed on the experimental platform by applying a
sine sweep with force F(t) = 4sinwt N and linear frequency sweep from 0.25Hz to 5 Hz
during 30s and sampling time of 1ms. The displacements z; and xy are processed to
compute the corresponding FFT and the frequency response functions (FRF) for their
transfer functions G1(s) = Xi(s)/F(s) and Ga(s) = Xa(s)/F(s), respectively. In Fig.
2 are shown both experimental FRFs. The modal parameters are obtained using SDOF
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Figure 2: Open—loogfr%qﬁeﬁ’?sy 821)(5) and Ga(s).

(Peak Picking and Curve Fitting) methods for the experimental FRF's in Fig. 2. The
resonant frequencies, damping ratios and mode shapes for the first three modes associated
to the three DOF model (4) are shown in Table I.

Table I. Modal parameters from the experimental FRFs.
Mode | Resonant frequency | Damping ratio Mode shape
i w; [He] & (&
1 1.87 0.076 [ 0.3929 0.7597 0.5182 ]T
2 3.18 0.019 [ —0.1935 0.3346 —0.9223 ]T
3 3.98 0.022 [ —0.1986 0.1412 0.9699 |"

The system parameters for the analytical model (4) are also obtained from other
experiments, using time and sine sweep responses for the two excitation forces (F and
w). In particular, it is assumed proportional damping and, therefore, the viscous dam-
ping coefficients ¢; are approximated to satisfy this condition. The model validation is
performed by comparing the numerical and experimental FRFs (see Fig. 3).The physi-
cal system parameters, validated to sufficiently match both numerical and experimental
FRFs, are given in Table II.

Table II. Physical system parameters.
m; = 3.2kg mg = 1.35kg ms = 0.209 kg
k1 =740N/m ko = 340N/ m ks ~ 105.07N/m
c1=23N/m/s | c2=0.97N/m/s c3~0N/m/s
[ =0.260 m E =71 GPa (Aluminum) | Tpeqm = 8.6699 x 10~ 2 m?*

The parameters [, E and Ijeq, denote the beam total length, Young’s modulus (Alu-
minum alloy) and area moment of inertia (width 0.0254 m and thickness 0.0016 m), res-
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Figure 3: Model validation using the analytic model and experimental results.

pectively. The mass ms includes the tip mass and the equivalent beam total mass, such
that beam can be considered as a massless cantilever beam.

VIBRATION CONTROL

The purpose of active vibration control is to eliminate some disadvantages of the pass-
ive vibration absorbers, adding DOF's or actuators that allow the application of a feed-
back/feedforward controller. Thus, one can find numerous active vibration control schemes
like PID control, pole assignment, LQR control, Hy control, sliding-mode control and
adaptive control. An efficient procedure to solve a vibration control problem consists of
the simultaneous application of passive and active vibration absorbers, also called hybrid
vibration absorbers, by means of which are combined efficiently the design of passive ab-
sorbers and a well-designed or optimal active controller, employing small control efforts,
to provide robustness against variations on the excitation frequency and/or parametric
uncertainty. See [2], [3], [5].

Modal vibration control techniques deserve much attention in real applications,
which is somewhat equivalent to the pole assignment, although this relies more on cases
where an estimated modal model is available from direct measurements and the control
objectives consider explicitly the manipulation of the system properties through its cri-
tical modes. Thus, one can move the resonant frequencies or inject damping, in such a
way to get a proper FRF.

A state space description of the three DOF system (4) is represented by

z(t) = Az(t)+Bu(t)+Ef(t), zc RS, uc R fcR? (5)
y(t) = Hz(t), yeR (6)
where the state vector, the active control force and harmonic perturbation are defined

by z = [x,i(]T, u = [0,u,0]" and f = [F,0,0]”, respectively. The system parameters are
compacted into matrices of proper dimensions

0 I 0
A= [—M_lK —M—lc}’B:[M—l]
E:[MO_I},H:[looooo]

with 0 and I denoting the zero and identity matrices. As mentioned before, the un-
deractuated system (5)-(6) is completely controllable from the only control input « and
completely observable from the output y = 21 (displacement of the primary system).
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Our vibration control objectives can be formulated in two steps as follows:

1. Design two passive vibration absorbers, one consisting of a mass-spring-viscous
damper absorber and other a flexible cantilever beam absorber, both connected to
the primary system.

2. Design a robust modal control (active vibration absorbers) to quickly stabilize the
primary system response in presence of harmonic forces, possibly with multiple
excitation frequencies.

Passive vibration absorbers

By assuming zero dampings, one can compute the excitation frequencies compensated
by the design of the two passive vibration absorbers. That is, the two absorbers can
attenuate harmonic forces F(t), containing up to two different excitation frequencies
into a narrow band close to the external resonance conditions: 1) wa = +/ka/ma =~
15.207rad/s = 2.42Hz, and 2) w3 = y/k3/m3 ~ 22.43rad/s = 3.57Hz. Both tuning
conditions are shown in Fig. 2 as points fo and f3. It is evident, however, the lack
of robustness of the passive scheme for excitation frequencies over a broader frequency
range and even worse near the resonant frequencies 1.87 Hz, 3.18 Hz and 3.98 Hz.
Experimental results. The two passive vibration absorbers for the primary system are
implemented on an experimental platform ECP™ (see Fig. 1b). In order to show the
dynamic performance of the two passive absorbers on the primary system, it is applied
a harmonic force F'(t), with the following excitation frequency profile:

4sin (27 f1t) N for f1 =2.42Hz & t € [0,12.5) s

P(t) = 4sin (27 fat) N for fo = 3.57Hz & ¢ € [12.5,25)
" ) 4sin (27 fit) + 4sin (27 fot) N for fi = 2.42Hz, fo = 3.57THz & t € [25,37.5) s

4sin (27 f3t) N for f3 =1.87Hz& t € [37.5,50]s

(7)
The experimental results are presented in Fig. 4. Clearly the passive absorbers are
good enough for the first three time intervals but not for the case when f3 = 1.87Hz
(resonance).
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Figure 4: Experimental result“with passive vibration absdfbérs and F(t) given in (7).

Active vibration absorbers using modal control

Modal control methods are essentially the application of a systematic pole placement or
eigenstructure assignment techniques. The modal controller is properly synthesized to



ICSV13, July2-6, 2006, Vienna, Austria

reassign the system poles of the controlled system in desired values, thus modifying the
eigenfrequencies, modal damping and modal shapes of the mechanical system ([3], [5]).
Consider the system (5)-(6) and assume that all the state variables are available for
feedback and that all the system modes are controllable. Then, a static state feedback
control law is given by
u=-Kjz (8)

where Ky € RS is the feedback gain matrix. The closed-loop system is then obtained
as

— (A—BK;)z+Ef, zeRS feR? 9
f
y = Hz, wyeR (10)

where the closed-loop system poles of the matrix (A — BKy) are placed on specific lo-
cations, thus reflecting the desired eigenfrequencies, modal dampings and modal shapes.
It is well-known that the existence of the feedback gain matrix Ky is guaranteed by the
controllability of the system, which is readily satisfied.

In modal coordinates, the 3-DOF system (4) can be expressed as a set of de-
coupled second order subsystems by using the state transformation x = Wq, where
W = [1)y, 19, 15] is the modal matrix, containing the three modal shapes associated to
each DOF and q = [g1,¢2, ¢3]"
be transformed as

is the vector of modal coordinates. Hence, system (4) can

Mg+ Cq + Kq = f(t) + u(¢) (11)

where M = 'MW, C = $7CW¥ and K = 7KW are (diagonal) modal mass, damping
and stiffness matrices, respectively. Here f = W7f and @ = ¥”u denote the modal
force and control vectors. In normalized form, the uncoupled modal equations can be
expressed by ~

Gi + 2Cwidi + wiq = i fi(t) + Biui(t), i=1,2,3 (12)

where ¢; and w; = \/k;/m; describe the modal dampings and natural frequencies, res-
pectively.

Now, it is synthesized a modal controller by static state feedback to move the open-
loop system poles from {—0.3442 + 411.02, —0.2172 + 19.944, —0.1573 + 124.61} to the
desired locations {—3.608 £ ¢7.77¢, —0.5650 £ i22.76, —3.3132 + i29.91}. That means
that, the open-loop resonant frequencies and damping ratios are removed from the set
{(1.76 Hz,0.031), (3.17Hz,0.011), (3.92Hz,0.006)} to {(1.39 Hz,0.432), (3.62 Hz, 0.026),
(4.84Hz,0.103)}. Note that the first mode is slightly moved to the left and its damping is
increased, while the second and third modes are moved to the right with a small damping
injection. Furthermore, the static state feedback is restricted to consider only measure-
ments on the first and second modes (i.e., without any feedback from the cantilever
beam). Thus, the corresponding feedback gain matrix in (8) leads to

Kf:[—1736.4 605.7 0 32.246 18.332 O]

Experimental results. The closed-loop FRF is obtained by the application of a linear
sine sweep with F'(t) = 4sinwt N and linear frequency sweep from 0.25 Hz to 5 Hz, during
30s and sampling time of 1 ms. The closed-loop experimental FRF's, with modal control,
corresponding to the transfer functions Gic(s) = X1(s)/F(s) and Ga(s) = Xa(s)/F(s)
are shown in Fig. 5.The dynamic performance and robustness of the two passive and
active vibration absorbers, when the harmonic force is provided in (7), are described by
means of the experimental results in Fig. 6. As expected the primary system response is
robust enough and much better than that obtained using the passive vibration absorbers
(see Fig. 4).



G. Silva-Navarro, B. Vdzquez-Gonzilez, O. Ortega-Cobos, M. Rios-Gutiérrez

0.005 . . . . ,

: : :
—— |G1c|=IX1/F|
1.3Hz |G2c|=IX2/F|

0.004 | Experimental

0.003 +

Gains (m/N)

0.002 +

0.001 H

0.000 T T T T T T
1 2 3 4 5 6

requency (Hz

Figure 5: Experimental FRFs for t'l‘:le closec(l—lt))op system with modal control.
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Figure 6: Experimental fesults of the closed-loop systenitising modal control.

CONCLUSIONS

Two passive vibration absorbers are used to robustly attenuate the system response of
a primary system affected for a harmonic force with several excitation frequencies. The
vibration control scheme is synthesized using modal analysis and modal control, leading
to experimental results with good dynamic performance and robustness.

1]
2]

References

M.P. Cartmell, Introduction to Linear, Parametric and Nonlinear Vibrations. (Chapman and
Hall, 1st. Ed., London, 1990).

S.G. Braun, D.J. Ewins, S.S. Rao (Eds). Encyclopedia of Vibration. (Vols. 1-3, Academic
Press, San Diego, CA, 2001).

C.W. De Silva, Vibration: Fundamentals and Practice. (CRC Press, Boca Raton, FL 2000).
D.J. Ewins, Modal Testing: Theory, Practice and Applications. (Research Studies Press Ltd.,
Baldock, UK, 2000).

C. R. Fuller, S. J. Elliot, P.A. Nelson, Active Control of Vibration. (Academic Press, San
Diego, CA, 1997).

R.S. Haxton and A.D.S Barr, “The autoparametric vibration absorber”, Transactions ASME
Journal of Engineering for Industry, 94, 119-125 (1972).

B. G. Korenev and L. M. Reznikov, Dynamic Vibration Absorbers: Theory and Technical
Applications. (Wiley, London, 1993).



