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Abstract
The ability to reconstruct a sound source using data measured in the nearfield of the source
surface is clearly of great benefit in studying vibration and sound. Such reconstructions pose
an interesting numerical problem because processing the measured data requires an inversion
which is very often singular. The singular behavior arises from the loss of information from
modes which decay rapidly away from the source and can be detected only in the nearfield
of the source. By contrast, the process of constructing sound fields by propagating away from
the source surface is relatively straightforward, and even provides a natural filter of the non-
radiating modes. In this paper we present a new method of source reconstruction which uses
propagation outward, with its natural filtering, together with a simple iteration scheme, to
reconstruct a sound source. The source surface may or may not be a closed surface. Tests
indicate that very accurate reconstructions are possible.

INTRODUCTION

For the calculation of the sound radiation from vibrating structures, the boundary element
method (BEM) applied to the surface Helmholtz integral equation (SHIE) has become a com-
mon standard[1]. Research continues[2, 3] with the goal of improving the speed of calculation
for cases involving a large number of elements (N > 1000); BEM calculations require the
time intensive procedure of inverting a complex N × N matrix, which in some cases may
be singular. Recently attention has been directed toward revisiting older methods employing
eigenfunction expansions, with particular interest in spherical wavefunctions (SWF)[4, 5].
While the first such methods used the orthogonality of the eigenfunctions on a spherical sur-
face, more recent methods employ fits to data on arbitrarily shaped surfaces[6, 7]. A difficulty
with such fits to non-spherical surfaces, as will be discussed in this paper, is that the fits are
limited to relatively low orders of the functions, with the result that outwardly propagated
wave fields, and more particularly inversely propagated wavefields, are rather inaccurately
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calculated. In this paper we present a new method, based on spherical wavefunctions, “itera-
tive deepening” and “forward refinement”[8] using the surface Helmholtz integral equation,
which has the following significant advantages: a) The method requires the inversion of only
one N × M matrix, with MϕN/10, resulting in large time savings for N > 1000. b) The
method works even at frequencies for which there are internal resonances (when the SHIE
does not have a unique solution), and does not require the use of internal points as in the com-
bined Helmholtz integral formulation (CHIEF) method[9]. For the singular cases it is usually
not necessary to calculate extra functions as in the Burton-Miller method[10]. c) The method
can produce accurate results (at the level of a few percent) for inverse as well as forward
propagation calculations; even the inverse propagation requires only the single N ×M matrix
inversion. The key to this method lies in overcoming the limitation on the number of spherical
wavefunctions which can be used to fit the data for non-spherical surfaces. The origin of the
limitation may be understood as follows:

We consider experimental data for a sound field measured on a surface, e.g. the sur-
face normal velocity measured on a vibrating surface, or the sound pressure measured on a
“hologram” surface. The data is measured at discrete points, and some assumption must be
made concerning the behavior of the field on the continuous surface between the measured
points. The only reasonable assumption is that the field varies slowly between the measured
points; for example, it should be the case that the actual field could be accurately represented
by the measured data points and quadratic shape functions. One of the reasons for the great
success of the BEM is that it takes advantage of the assumption that fields vary according to
shape functions in evaluating integrals for the SHIE over the measured data. By contrast, it is
in satisfying this assumption, for non-spherical surfaces, that spherical wavefunction fits are
of limited value. For non-spherical surfaces, high order functions would be required simply to
conform to the location of the data points (e.g. fitting relatively “sharp” corners) in addition to
fitting the values at the data points. The result is that while many high order functions could
well fit the data at the measured points, the field so represented between the data points would
vary rapidly, not satisfying the assumption that the actual field varies slowly. An important
point is that this problem cannot be solved by simply having a high density of data points; in
this case the fit with the spherical wavefunctions may require a very large number of terms,
each with very small coefficients, and such coefficients may be too difficult to determine in
practice. Mathematically, representing a function with a complete set of eigenfunctions re-
quires an infinite sum, and the sum may converge too slowly for numerical implementation
with a truncated series. To avoid unlikely rapidly varying features resulting from high order
terms in a fit with spherical wavefunctions, fits must be limited to low orders. Such low order
fits provide a correspondingly inaccurate representation of the shape and value of the field on
the surface, in error by 20% to 100%.

In our new method for solving forward and inverse radiation problems for non-spherical
sources, fitting with spherical wavefunctions is a critical part of the solution, but the fit is not
the final solution, as will be explained in this paper. Our research for non-spherical shapes,
such as the “muffler” and “engine” shown in Figure 1, and for values of ka (wavenumber
times characteristic source size) up to 25, shows that this method reproduces the results of a
standard BEM calculation for forward propagation to better than three percent.
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Figure 1: Non-spherical shapes, designated a “muffler” and an “engine”, which have been
studied with the new method for calculating sound fields. Starting with Nϕ1000 points for
a boundary condition, sound fields can be quickly calculated by inverting a single N × M

matrix, with MϕN/10. There are no problems with singular matrices and no necessity for
selecting interior “CHIEF” points.

SPHERICAL WAVEFUNCTIONS

Separating variables in spherical coordinates yields the spherical wave functions. For finite
size sources, one has the boundary condition that solutions be outgoing waves at infinity.
Thus for the spherical wavefunctions (assuming a time dependence exp (iωt)) we use

Φlm (r, θ, φ) = (jl (r)− iyl (r)) eimφYlm (cos θ) (1)

where

Ylm (ζ) =

√

2l + 1

4π

(l −m)!

(l + m)!
Pm

l (ζ) (2)

The jl and yl are the spherical Bessel functions, and the P m
l are the associated Legendre poly-

nomials. The Ylm are similar to the spherical harmonics, but with the φ dependence removed;
the φ dependence is included explicitly in Eq. (1).

Any solution to a radiation problem may be written as a linear combination of these
functions:

p (~r) =
∑

l

∑

m

AlmΦlm (~r) (3)

A necessary field is the normal component of the particle velocity at a surface given by
points ~rs. We define a surface field which incorporates the acoustic impedance ρc as v (~rs) =

ρcn̂ (~rs) ·~v (~rs) , where n̂ (~rs) is the unit normal at the surface point ~rs. In terms of the eigen-
functions Φlm, we have

v (~rs) =
∑

l

∑

m

AlmΦ ′

lm (~rs) (4)

where Φ ′

lm (~rs) = (1/k) n̂ (~rs) · ~∇Φlm (~rs) .
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LOW ORDER FITS WITH EIGENFUNCTIONS

For the forward propagation problem, we assume that the normal component of the particle
velocity field is known at a finite set of discrete points ~ri with i = 1, 2, 3, ...N. We simplify
notation by writing v (~ri) = vi, and similarly for other functions of ~ri. We simplify notation
by letting the one integer µ index the two subscripts l and m : µ = [l (µ) ,m (µ)] . We
truncate to a finite number of basis functions, so that µ = 1, 2, 3, ...M. Finally, we use the
convention that an index repeated in a term indicates a sum over that index. Now we can
rewrite Eq. (4) as vi = Φiµ

′Aµ. vi is a complex vector of length N, Aµ is a complex vector
of length M, and Φ ′

iµ is an N × M matrix. We shall later find that MϕN/10, so that the
matrices are not square. The method of Singular Value Decomposition (SVD) allows one to
find the inverse of such matrices. This is equivalent[11] to adjusting the coefficients Aµ to
least-squares fit the boundary data vi. Once the Aµ have been determined from the surface
normal velocity vi, then the surface pressure may be determined with p (~ri) = pi = ΦiµAµ.

In holography, it is usually the surface pressure on a hologram surface which is measured. In
this case the equation for pi is inverted to find Aµ, from which vi may be calculated.

What has been discussed above is not new; it is essentially the Rayleigh-Ritz method,
discussed in basic texts on mathematical methods[4], implemented with contemporary com-
puter algorithms. Our technique evolved from the method of Koopmann[12] and was at first
referred to as the “equivalent source method.”[7, 13] Other researchers had used similar meth-
ods before our implementation[5, 6]. Wu[14, 15] has extensively refined and extended the
technique. What is new in our current method is the procedure of “forward refinement”[8]
with “parametric relaxation”. The application of “iterative deepening”[8] for solving bound-
ary value problems is also new.

As discussed earlier, the discrete nature of data points on a non-spherical surface limits
the order (and the number of basis functions M ) which may be found by least-squares fitting
the data. This limit causes the vectors vi and pi to be relatively inaccurate representations of
the actual sound fields. The method for determining the optimal order for least-square fits to
the surface data, as well as the method of “forward refinement” for converting vi and pi to
accurate versions, employs the BEM matrices for the SHIE. These are discussed next.

THE BEM MATRICES

The surface Helmholtz integral equation (SHIE) for the sound pressure p (~ri) is[1]

p (~ri) =
1

Ω (~ri)

(
∫ ∫

(

−n̂ · ~∇sG (~ri;~rs)
)

p (~rs) dS

)

+
1

Ω (~ri)

(
∫ ∫

(−ikG (~ri;~rs)) v (~rs) dS

)

(5)

where Ω(~r) =
∫∫

n̂ · ~∇sG0 (~r;~rs) dS, G (~r;~rs) =

exp (−ik | ~r − ~rs |) /4π | ~r − ~rs |, G0 (~r;~rs) = 1/4π | ~r − ~rs | and n̂ · ~∇s ia a normal
derivative at the point ~rs.



ICSV13, July 2-6, 2006, Vienna, Austria

Taking the derivative of this equation to obtain a similar integral equation for the sur-
face normal velocity v (~ri) results in singular integrands. These singularities may be removed
by subtracting kernels with similar singularities and by having factors which vanish at the sin-
gular points[1]. In the boundary element method, the surface is divided into elements, with a
number of nodes on their peripheries. The integrals over the elements are accomplished using
shape functions and/or constant elements (with the field over the entire element taking on the
value of the field at the center of the element). When this is done the SHIE and its derivative
become matrix equations:

pi = Aijpj + Bijvj (6)

vi = Cijpj + Dijvj (7)

The matrices A,B,C,D are integrals of the shape functions and/or various kernels (G,

etc.) over individual elements, and the vectors p and v are the sound fields evaluated at the
element nodes or centers.

FORWARD REFINEMENT, ETC.

To describe forward refinement, as well as the procedures of iterative deepening and paramet-
ric relaxation, the case of forward propagation, where v is known and p is to be determined,
will be used as an example. A simple version of forward refinement with iterative deepening
will be discussed first, and then this procedure itself will be refined with “parametric relax-
ation”. To clarify the procedure, we re-write Eq. (6) as

pout
i = Aijp

in
j + Ei (8)

where Ei = Bijvj . The basic procedure is as follows: a) Start with a basis set of
SWF Φlm using l = 0 through lmax, where lmax is a low order (e.g. 3). b) Use least-squares
fitting of the known vi with the low order basis set to find the relatively inaccurate fields
vswf and pswf . c) Set pin = pswf . d) Using pin and Eq. (8), calculate pout. Also calculate
S = Σi

(

pin
i − pout

i

)

2
. e) Set pin = pout, and iterate by returning to step d). Terminate the

iteration if S starts to increase. f) Save the best value of S for this lmax as Sl, and increase
lmax. However, before returning to step b) for an outer iteration loop, remove functions from
the basis set which had relatively low values of the coefficients in the fit

for vswf . This reduces the value of M and decreases the time required to invert the
N × M matrix in the least-squares fit. This outer iteration loop, in which lmax is increased,
continues until Sl starts to increase.

The term “iterative deepening” refers to the pruning of the basis set and the reduction
of M for the next value of lmax in step f); the term is taken from a procedure in computer
chess, where good moves found in a shallow search of a tree of possible moves are used to
optimize a search to a greater depth[16]. From the minimum of Sl, the optimum value of lmax

is found, usually resulting in MϕN/10.

Step d) is referred to as “forward refinement” because the calculation is done in a “for-
ward direction” with the original matrices, rather than their inverses. This procedure so far is
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the same as solving the matrix equation Eq. (6) by iteration[2], using pswf as a seed; how-
ever, the procedure becomes significantly different with the addition of parametric relaxation,
discussed next.

If the iteration in step d) were undertaken as described, it is likely that the iteration
would not converge to the desired solution. Parametric relaxation is used to guarantee the
desired convergence. First of all, general convergence could be improved by not using pin =

pout in step e), but instead using pin =
(

pout + pprev
)

/2, where pprev was the previous
version of pin which produced the current version of pout

. Further convergence to the desired
solution may be obtained by using
pin =

[

pout + (1 − β) pprev + βpswf
]

/2 with the parameter β between 0 and 1. Even though
pswf is relatively inaccurate, it still gives the iteration an excellent idea of where it should be
heading. In any case, convergence to the desired solution is further guaranteed by replacing

Ei = Bijvj with Ei
′ = Bij

[

(1 − α) vj + αvswf
j

]

, with the parameter α between 0 and 1.

Consider the case when α = β = 1; this corresponds to starting with pswf and vswf in Eq.
(6). Since pswf and vswf are linear combinations of spherical wavefunctions, they exactly
satisfy the SHIE, and we have Sl = S = 0 exactly, clearly the global minimum. If α and/or
β are changed slightly, then the global minimum will shift slightly, but the previous solution
will not be far off, so that the iteration procedure should bring it to the new global minimum
of S. Thus by slowly relaxing α and β to zero, the iterative solution will track the global
minimum of S, and converge to the desired solution. This slow variation of α and β from
1 to 0 is the parametric relaxation procedure. In the current implementation of the computer
program, β is set at 1 during the iterative deepening process (finding the optimum lmax) and
α is relaxed from 1 to 0 in steps of 0.2. Once the optimum lmax is found, β is relaxed from 0.9
to 0 in steps of 0.1, and at each value of β, α is relaxed as before. It is important to note that
in order to find the accurate version of the unknown surface field, it is crucial to know pswf

and vswf ; while they may be relatively inaccurate versions of the actual wave fields, they are
still approximations of the actual wave fields which are exact solutions of the SHIE, and thus
serve to initially locate the global minimum of S.

For holographic reconstruction, where p is measured on a hologram surface, the SWF
and forward refinement are used as above to find an accurate version of the surface normal
velocity v; the only difference is that the roles of Eq. (6) and Eq. (7) are reversed.

INVERSE PROPAGATION

In holographic sound source reconstruction, the sound pressure ph measured on a hologram
surface ~rh, with ph = p (~rh) , must be used to determine the normal velocity on the surface of
a source, vs = v (~rs) . Here it will be assumed that the hologram measurements are taken in
the nearfield, very close to the source; in our current research we assume measurements are
taken on a congruent surface at a distance | ~rh − ~rs | ϕ0.1 | ~rs | .

The first step is to use the normal derivative surface Helmholz integral equation (ND-
SHIE, Eq. (7)) and ph to determine the normal velocity vh at the hologram surface. This can
be done with a boundary element method; while the Dirichlet problem is more difficult than
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the Neumann one (SHIE) for the BEM, one at least has an analytical equation which can
be solved with the BEM. For the remainder of the inverse problem, one does not have an
analytical equation to address.

The next step is to fit ph and vh with spherical wavefunctions. With the coefficients
of this fit one can evaluate SWF fields on the hologram surface and on the source surface:
pswf

h , vswf
h and pswf

s , vswf
s . These fields are then used to seed an iteration proceedure as

follows:
a) The hologram fields at individual points, phi and vhi, are transferred back to corre-

sponding points on the source surface with

psi
′ =

(

pswf
si /pswf

hi

)

phi and vsi
′ =

(

vswf
si /vswf

hi

)

vhi (9)

This simple proceedure alone can result in a 10% - 30% reconstruction of the source.
At a few points the denominators in the equations may be zero, and at these points one uses
the equations

psi
′ =

(

pswf
si /vswf

hi

)

vhi or vsi
′ =

(

vswf
si /pswf

hi

)

phi (10)

In the rare case any of these ratios are also singular, one simply uses the average of
non-singular ratios at nearby points.

b) The fields psi
′ and vsi

′ may be refined with Eqs. (6) and (7), to ensure that they obey
the surface Helmholtz integral equation.

c) The next step is to use the Helmholtz integral equation on the source surface to
propagate psi

′ and vsi
′ out to the hologram surface, to obtain the fields phi

′ and vhi
′.

d) One now loops back to step a), but with the SWF fields replaced with the new fields
phi

′, vhi
′ and psi

′, vsi
′, and the iteration continues.

The iteration is monitored with | phi − phi
′ |2, and is terminated when this starts to

increase. It may be possible to reduce the growth of unwanted features by smoothing the
iteration fields by adding some fraction of the SWF fields (as with the parameter β in the
iterative solution of the SHIE). However, we have not yet implemented this feature in our
current computer code.
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