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Abstract
In practical cases for radical operating conditions some systems exhibit slight nonlinear
behavior. The autoparametric vibration absorber based on a pendulum has been widely
studied and employed to quench the resonant excitation response of a primary linear
spring and mass viscous damped system. This work presents an analysis of nonlinear
primary systems modeled by the Du¢ ng equation and coupled to a pendulum vibra-
tion absorber. The multiple scales method is used to determine that, for external and
internal resonances, the excitation force and the cubic nonlinearity are absorbed by the
pendulum. In both cases the steady state amplitude response of the primary system,
with linear and nonlinear springs, is the same. It is observed that, in contrast to linear
primary systems, a Du¢ ng primary system leads to three real �xed points for the fre-
quency response. In fact, the nonlinearity on the primary system is transferred to the
pendulum dynamics, modifying the steady state response and bending the jumps. The
�xed points, amplitude and phase response and the stability are given in terms of the
nonlinearity. To ensure the performance of the absorber some constraint between the
nonlinearity and the external force must be accomplished. The system performance is
illustrated by means of numerical simulations.

INTRODUCTION

The study of a dynamic vibration absorbers has been gradually increasing. For instance,
the results obtained by Cartmell [1], using the techniques described in Nayfeh and Mook
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[4], prove how in practical cases the tuning of the excited harmonically primary linear
system, with a pendulum, bring to the quenching of the �rst one. Other example is given
in the work by Song et. al. [5], where optimal parameters of the system are computed
to obtain vibration absorption and stability. Moreover, in Zhu et. al. [7] is considered
a passive vibration control scheme, including nonlinear damping and nonlinear springs.
The nonlinearities can appear also in the absorber dynamics as in the pendulum absorber
(see also Mikhlin and Reshetnikova [3] and references therein).

This work considers a mechanical system consisting of a primary system, including
non-linear elastic terms and dynamically coupled to a pendulum vibration absorber. A
similar system is analyzed by Hsieh and Shaw [2] as a chaotic system. The multiple scales
method is employed to determine the frequency response of the overall nonlinear system,
using similar approximations as those in Woafo [6]. The resulting solution enables us
to conclude that, the non-linear cubic term improves the absorption performance of the
pendulum for greater excitation forces. The stability is also a¤ected by the nonlinear
term.

SYSTEM EQUATIONS

The system under study consists of an oscillating mass m1 attached to a pendulum
vibration absorber as shown in Fig. 1. All the devices in the primary system are linear,
except for the elastic sti¤ness.The equations of motion describing the dynamics of the
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Figure 1: Pendulum absorber diagram for the Du¢ ng primary system

horizontal displacement of m1 and the angular displacement of m3 are given by
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The following system parameters are de�ned as
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where " represents a small perturbation parameter associated to the coupling between
the pendulum and the primary system, among other kinds of perturbations like damp-
ing, nonlinearities and the exogenous excitation force. The equations of motion (1)-(2)



ICSV13, July2-6, 2006, Vienna, Austria

are then normalized as follows
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In order to specify the in�uence of the damping over the overall system, we de�ne
�1 = "�1 and �2 = "�2. The cubic term, associated to the Du¢ ng equation, is described
by k02 = "�, representing the e¤ects of a hard spring. In addition, the exogenous
excitation is related with the amplitude perturbation by F = hF0 and f = "F . Then,
the normalized system equations are expressed as
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Frequency analysis

The multiple scales method is used to �nd an approximated solution for the perturbed
system equations. Then, the perturbed solutions to the system equations (5)-(6) are
proposed to be (see also Woafo et. al. [6])

x (T0; T1) = x0 (T0; T1) + "x1 (T0; T1) + : : : (7)

� (T0; T1) = �0 (T0; T1) + "�1 (T0; T1) + : : : (8)

where T0 is the fast time scale, T1 is the slow time scale and both time scales are
related by the perturbation as Tn = "nT0, with n = 0; 1; 2 : : : and T0 = t. Time scales
derivatives leads to the operators d

dt = D0 + "D1 + : : :and
d2

dt2
= D20 + 2"D0D1 + : : :.

Moreover, the external and internal resonance conditions are de�ned by
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where �1 and �2 denote two detuning parameters.
Applying the di¤erential operators to the solutions (7)-(8), and constructing each

of the perturbed system equations (5)-(6), yields a set of di¤erential equations in terms
of powers of ". The resulting equations for the �rst two powers of " for the perturbed
equations are expressed by

"0 : D20x0 + !
2
1x0 = 0 (11)

"1 : D20x1 + !
2
1x1 = �2�1!1D0x0 � 2D0D1x0 � �x30 + h (D0�0)

2 (12)

+ h
�
D20�0

�
�0 + f cos (
T0)

"0 : D20�0 + !
2
2�0 = 0 (13)

"1 : D20�1 + !
2
2�1 = g

�
D20x0

�
�0 � 2D1D0�0 � 2�2!2D0�0 (14)

The proposed solutions for (11) and (13) are of the form
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where the amplitudes depend on the fast time scale T1 and the oscillations on the time
scale T0. Here �A (T1) and �B (T1) denote complex conjugates of the amplitudes A (T1)
and B (T1), respectively. Substituting (15) and (16) in equations (12) and (14) result
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where C:C: stands for complex conjugate terms. Canceling secular terms from equa-
tions (17)-(18) and using the polar forms for A (T1) = 1
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where the phases are de�ned by

�1 = �1T1 � �, �2 = 2 � � � 2�2T1 (21)

Steady state response

From system equations (19)-(20) are determined the steady state response amplitudes
and their stability. Therefore, taking real and imaginary parts of (19) and (20), respect-
ively, and re�ecting the steady state on the phases (21) like �0 = �1 and 
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Now, solving the above equations are determined the approximated amplitude responses
for the primary system and pendulum, that is,
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Note that, the primary system response (26) does not depend on the cubic term.
In fact, the amplitude is the same as that determined by Cartmell [1], when there are
only linear elements. The pendulum response is a¤ected by the cubic nonlinearity in
(28)-(29), that is, the cubic term has been transferred from the primary system to the
pendulum. Observe, in addition, that if the cubic term is neglected, � = 0, the response
coincides also with that in Cartmell [1]. Therefore, it is concluded the robustness of
the pendulum vibration absorber with respect to some nonlinearities on the primary
system, cancelling the e¤ect of the cubic nonlinearity.
Fixed points. The real and imaginary parts are taken from equations (19)-(20) and
the system is solved for a0; b0; �01 and �

0
2, resulting the di¤erential equations
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The �xed points are computed for the external and internal resonance conditions, that
is, when �1 = �2 = 0 and a

0 = 0, b0 = 0, �01 = 0 and �
0
2 = 0.

The system has one �xed point for the uncoupled or linear response, where the
pendulum is not a¤ected by the primary system (b = 0), and two �xed points for the
coupled response or nonlinear interaction (a 6= 0, b 6= 0), where the absorption is being
performed. Clearly, one is interested on the absorption conditions and the corresponding
�xed points given in the following Table I:

Table I. Fixed points
Fixed point 2 Fixed point 3
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This polynomial has four roots for u,
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parameters are positive. The roots for u must be real, implying one main constraint on
the system parameters in order to get real values for b and �2, characterized by

� �

s
16

9

f2g6

�62
� 64
9

�21g
4

�42
!41 (36)

This constraint limits the parameter � (cubic nonlinearity) with respect to the amplitude
force f in order to satisfy the absorption conditions.
Stability analysis. The stability of the system response is determined using again
the system equations (30)-(33). The stability of the solutions is evaluated using the
Hurwitz criteria for the �xed points associated to the system parameters (see Table II)
and actual operating conditions.

Table II. System parameters
!1 = 8:2368 �1 = 0:0086 f = 0:2357 h = 0:1428 � = 5
!2 = 4:1183 �2 = 0:0051 g = 4:2402 " = 0:55

Linearizing (30)-(33) for the system parameters given in Table II and the �xed point 2
in Table I leads to the equilibrium a = 0:002186, b = 0:710107, �1 =

�
2 and �2 =

�
2 .

The corresponding characteristic polynomial for this �xed point is unstable. It is still
possible to obtain stable responses for some detuning parameters �1 and �2, that is, if
we determine the �xed points as a function of �1 and �2 then, when this �xed point is
re-evaluated, the stability can be guaranteed. For instance, for the tuning conditions
�1 = 0:65 and �2 = 0 the �xed point 2 result the equilibrium solutions a = 0:0187,
b = 0:76539, �1 = f0:1169, �3:0246g and �2 = �

2 . When �1 = 0:1169 the �xed point is
unstable but for �1 = �3:0246 is stable.

SIMULATION RESULTS

Some numerical simulations are presented to qualitatively evaluate the overall system
performance for some values of the parameter �. From (27) is plotted the frequency
response amplitude of the pendulum b. In Fig. 2(a) is shown the response for the
absorber in the case of � = 0, which corresponds to the linear primary system (see [1]).
As the nonlinear cubic term increases to � = 52, as shown in Fig. 2(b), the absorber
response modi�es the jumps at both extremes, thus bending them and creating a saddle
point at the primary resonance frequency.When � = 54 the size of jumps are also
reduced (see Fig. 3). As we mentioned, the frequency response of the primary forced
system is described by the equation (26), which is identically to the linear case. The
corresponding value of the force amplitude is F0 = 3N.

To correlate the frequency response in the time domain, some numerical simu-
lations of the system (3)-(4) and parameters in Table II are depicted in Fig. 4. It is
important to remark that, when � = 0 leads to large amplitudes and unstable behavior
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Figure 2: Absorber frequency response for � = 0 and � = 52:
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Figure 3: Absorber frequency response for � = 54 and � = 56:

with no absorption. In contrast, when the nonlinear cubic term is set to � = 5 the ab-
sorption is achieved, that is, the nonlinearity improves the range of vibration absorption
of the pendulum for greater excitation forces on the primary system.

Figure 4: Time response for a Du¢ ng primary system and pendulum absorber.

Finally, in Fig. 5 is shown the time response for � = 54, when the external
excitation has a detuning of �1 = 1 and the absorption is still satis�ed. At t = 150 s the
detuning is changed to �1 = 0, where the absorption is still acomplished and improved.
This behavior can be predicted from the frequency response (see Fig. 3a).

CONCLUSIONS

A realistic condition on which a primary excited Du¢ ng system is passively controlled by
one pendulum that acts as an absorber is considered. By the application of the multiple
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Figure 5: Time responses for � = 54, F0 = 3 and tuning variation on the excitation
frequency from 
 = !1 + 1 to 
 = !1.

scales method is determined that, the nonlinear dynamic e¤ect of the primary system
is absorbed by the pendulum, then the �xed points of the overall system are modi�ed
with respect to a linear system. The frequency response of the absorber is modi�ed
by the cubic nonlinear term, while the primary system frequency response is the same
as in the linear case. The transference of the nonlinear term improves the absorption,
even for greater forces. Moreover, there exist approximated constraints between the
force magnitude and the nonlinear cubic coe¢ cient to obtain real values of the system
response. The absorption capacity is robustly satis�ed for excitation frequencies close
to the internal resonance condition (tuning) but the system stability could be stable or
unstable, depending on the phase of the �xed point. The pendulum can be considered
as a cubic vibration absorber.
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