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Abstract

In this paper, a technique for detection of breathing cracks in a planar frame structure is

presented. First, the governing equations of a planar frame structure with breathing cracks

are derived using the finite element method based on the mixed variational principle. Then a

method for analysis of steady-state vibrations of the frame structure is presented. Based on

the presented analysis method, a technique to determine the crack parameters is proposed.

INTRODUCTION

Many techniques for detecting cracks of a structure or a machine using its dynamical response

have been proposed so far [1], [5], [6]. Most of the techniques detect cracks assuming that the

cracks are open cracks which are always open during vibration. However, actual fatigue cracks

are breathing cracks which open and close during vibration. In a previous report [2], [3], the

authors proposed a technique for detection of breathing cracks in a beam using its dynamical

response, and confirmed its applicability by numerical simulation and experiment. This paper

presents a technique for detection of breathing cracks in a planar frame structure composed

of beams which deforms in axial and lateral directions, as shown in Fig.1.

DERIVATION OF THE GOVERNING EQUATIONS AND

ANALYSIS OF STEADY-STATE VIBRATION

Derivation of a finite element based on the mixed variational principle

As a preparation for developing a technique for detection of breathing cracks, we derive a

finite element for a beam which deforms in the axial and lateral directions. As discussed later,
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Figure 1: Planar frame structure with breathing cracks

we model the breathing crack in a form that flexibility of the element with the breathing

crack changes depending on the sign of the tension and bending moment in the element.

Hence, we use the mixed variational principle[4], which enables us to deal the tension and

bending moment in the element explicitly. We assume that deformations in the axial and

lateral directions are not coupled.

We consider a beam element of length Le, line density ρ, Young’s modulus E, cross

sectional area A and the second moment of area I . As shown in Fig.2, we fix the origin O at

one end of the element and take the x axis along the longitudinal axis. We denote the elonga-

tion, deflection, tension and bending moment of the element by u, v, T andM , respectively.

We assume that the element is subjected to, in the axial and lateral directions, viscous damp-

ing forces with coefficients cu and cv, and distributed external forces fu(x, t) and fv(x, t).

We also assume that the element is subjected to, at the both ends, tensions Ti, shear forces Si

and bending moments Mi (i = 0, 1), where the subscripts 0 and 1 represent the ends x = 0

and x = Le, respectively. Then, the mixed variational principle for this element is written as

∫ Le

0

(

ρ
∂2u

∂t2
δu + cu

∂u

∂t
δu + T

∂

∂x
δu − fu(x, t)δu +

∂u

∂x
δT −

1

EA
TδT

+ ρ
∂2v

∂t2
δv + cv

∂v

∂t
δv − M

∂2

∂x2
δv − fv(x, t)δv −

∂2u

∂x2
δM −

1

EI
MδM

)

dx

− T1δu1 + T0δu0 − S1δv1 + S0δv0 + M1

∂δv1

∂x
− M0

∂δv0

∂x
= 0,

(1)

where δu, δv, δT and δM are variations of u, v, T and M in the element, δui and δvi (i =

Figure 2: Beam element
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0, 1) variations of u and v at the ends of the element.

Next we consider to approximate u, v, T andM . Here we approximate T by constants,

u andM by a linear function and v by a cubic function. We take nodes at the both ends of the

element, and denote the nodal elongations, deflections slopes of the deflection and bending

moments by ui, vi θi and mi (i = 0, 1), respectively, and the tension in the element by t̂.

Using these quantities, we approximate u, v, T andM as

u = LT

wŵ, v = NTŵ, T = t̂, M = LT

mm̂, (2)

where w andm are vectors given by

ŵ = {u0 v0 θ0 u1 v1 θ1}
T , m̂ = {m0 m1}

T . (3)

In addition, Lw, Lm andN are vectors given by

Lw = {L1(x) 0 0 L2(x) 0 0}T , Lm = {L1(x) L2(x)}T ,

N = {0 N1(x) LeN2(x) 0 N3(x) LeN4(x)}T ,
(4)

where L1(x), L2(x), N1(x), N2(x), N3(x) and N4(x) are functions defined by

L1(x) = 1 −
x

Le

, L2(x) =
x

Le

,

N1(x) = 1 − 3

(

x

Le

)2

+ 2

(

x

Le

)3

, N2(x) =
x

Le

− 2

(

x

Le

)2

+

(

x

Le

)3

,

N3(x) = 3

(

x

Le

)2

− 2

(

x

Le

)3

, N4(x) = −

(

x

Le

)2

+

(

x

Le

)3

.

(5)

We also express the variations δu, δv, δT and δM in Eq.(1) as

δu = LT

wδŵ, δv = NTδŵ, δT = δt̂, δM = LT

mδm̂, (6)

where δŵ and δm̂ are arbitrary vectors, and δt̂ an arbitrary scalar.

Substituting Eqs.(2) and (6) into Eq.(1), and considering that δŵ, δt̂ and δm̂ are arbi-

trary, we have equations of the form

M̂ ¨̂w + Ĉ ˙̂w + T̂ ut̂ − T̂ vm̂ = f̂(t) + b̂,

T̂
T

u ŵ − Âut̂ = 0,

T̂
T

v ŵ + Âvm̂ = 0,

(7)

where M̂ , Ĉ, T̂ u, T̂ v and Âv are matrices determined from ρ, cu, cv , Lw,N , EI and Lm.

The quantity Âu is the inverse of EA multiplied by Le. The quantities Âu and Âv represent

flexibility of the element. In addition, f̂(t) is a vector determined from fu(x, t), fv(x, t), Lw

andN , and b̂ a vector given by

b̂ = {−T0 − S0 M0 T1 S1 − M1}
T . (8)
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Model of the breathing crack

The breathing crack opens and closes during vibration. When the breathing crack is closed,

rigidity of the beam element remains the same as that of the element without the crack. When

the the breathing crack is open, however, rigidity of the beam element is reduced, or flexibility

is increased, locally. Here, we express the increment of the flexibility due to the crack by

uniform increment of the flexibility in the element with the crack as shown in Fig.3. The

crack may occur on the upper surface or lower surface of the beam. For axial deformation,

there is no difference between those two cases. For lateral deformation, however, the opening

and closing of the crack is opposite in the two cases. In the following, we denote the increment

ratio of the flexibility for axial deformation by α, that due to the crack on the upper surface

for lateral deformation by αU and that due to the crack on the lower surface by αL. It is clear

from the physical consideration that α, αU, αL must satisfy the conditions

α ≥ 0, αU ≥ 0, αL ≥ 0. (9)

Using the above model, the governing equations for the element with a breathing crack

can be written as

M̂ ¨̂w + Ĉ ˙̂w + T̂ ut̂ − T̂ vm̂ = f̂(t) + b̂

T̂
T

u ŵ − Âu

(

1 + αH(t̂)
)

t̂ = 0

T̂
T

v ŵ + Âv

(

I + αU

1
∑

i=0

H(mi)I i + αL

1
∑

i=0

H(−mi)I i

)

m̂ = 0,

(10)

where H(·) is the Heaviside function, I the identity matrix, Ii (i = 0, 1) the matrices ob-

tained by replacing the second and first columns of the identity matrix by the zero vector,

respectively.

Assemble of the elements

Finally we assemble the elements to obtain the governing equations for the total frame struc-

ture. This can be done in the same way as that in the usual finite element method. We take

the global coordinate system OG − xGyG, and express the nodal elongation ui, deflection vi,

slope of the deflection θi, tension Ti, shear force Si and bending momentMi in terms of the

global coordinates. It is easily seen from the geometrical consideration that for the element

inclined to the global coordinate system by an angle φ, as shown in Fig.4, the nodal variables

(a) Model for the axial deformation (b) Model for the lateral deformation

Figure 3: Model of the element when the crack is opened
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in the element can be expressed as

uG
i = ui cos φ − vi sin φ, vG

i = ui sinφ + vi cos φ, θG
i = θi

TG
i = Ti cos φ − Si sin φ, SG

i = Ti sin φ + Si cos φ, MG
i = Mi.

(11)

where uG
i and vG

i the displacements in xG and yG direction, θG
i the slope of the deflection, T

G
i

and SG
i the forces in xG and yG direction andMG

i the moment. Applying the transformation

(11) to all of the nodal variables, and imposing the condition that the global nodal variables

at the nodes common to elements are the same, we obtain the governing equations for the

frame structure. In addition, we specify, at the boundary nodes, three of the quantities uG
i , v

G
i ,

θG
i , T

G
i , S

G
i ,M

G
i following the given boundary conditions. At the fixed or simply supported

ends, unknown reaction forces or moments occur. We remove the equations involving these

unknown reaction forces or moments from the governing equations. Then, we obtain

Mẅ + Cẇ + T ut − T vm = f(t),

T T

u w − Au (t;α) t = 0,

T T

v w + Av

(

m;αU,αL
)

m = 0,

(12)

where w is a vector obtained by arranging uG
i , v

G
i and θG

i at every node except for the

constrained ones, t and m vectors obtained by arranging the tension and bending mo-

ment in every element, and α, αU and αL vectors obtained by arranging the increment

ratio of the flexibility of every elements. In addition, M , C, T u, T v, Au (t;α) and

Av

(

m;αU,αL
)

are matrices obtained by arranging appropriately the matrices M̂ , Ĉ, T̂ u,

T̂ v, Âv

(

I + αU
∑

1

i=0
H(mi)I i + αL

∑

1

i=0
H(−mi)I i

)

and the scalars Âu

(

1 + αH(t̂)
)

for each element.

Note that the nodal tensions can be obtained by substituting the solution of Eq.(12) into

the first equation of Eq.(10).

Analysis of the steady-state vibration by the harmonic balance method

Based on the governing equation(12), we analyze the steady-state vibration for a periodic

excitation. In the following the fundamental frequency of the excitation is denoted by ω.

Figure 4: Element inclined to the global coordinate system by φ
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Since Eq.(12) is nonlinear, we solve it by an iteration method. For this, we denote the solution

for the kth iteration by wk, tk, mk, and express them using the solutions for the (k − 1)th

iteration as

wk = wk−1 + ∆w, tk = tk−1 + ∆t, mk = mk−1 + ∆m, (13)

where ∆w, ∆t, ∆m are corrections from the solutions for the (k − 1)th iteration. We as-

sume that they are small. We substitute wk, tk, mk in Eq.(13) for w, t, m in Eq.(12), and

neglect the terms of∆w,∆t,∆m whose order is higher than one. Furthermore, considering

that step-like change in the flexibility matrices Au (t;α),Av

(

m;αU,αL
)

occurs when the

tensions or bending moments are zero, we obtain

Mẅk + Cẇk + T utk − T vm
k = f(t),

T T
u wk − Au

(

tk−1;α
)

tk = 0,

T T
v wk + Av

(

mk−1;αU,αL

)

mk = 0.

(14)

The second and third equations of Eq.(14) can be solved for tk,mk to obtain

tk = A−1

u

(

tk−1;α
)

T T
u wk, mk = −A−1

v

(

mk−1;αU,αL

)

T T
v wk. (15)

Substituting the above equations into the first of Eq.(14), we obtain

Mẅk + Cẇk + T uA−1

u

(

tk−1;α
)

T T
u wk

+ T vA
−1

v

(

mk−1;αU,αL

)

T T
v wk = f(t).

(16)

Note that the above equation is linear in wk.

We consider to solve Eq.(16) by the harmonic balance method. Since the excitation is

periodic one whose fundamental frequency is ω, the vector f(t) can be written in the Fourier

series of the form

f(t) = f0 +

∞
∑

j=1

{

f cj cos(jωt) + f sj sin(jωt)
}

. (17)

In order to obtain the steady-state solution to the above excitation, we express wk in

the Fourier series of the form

wk = wk
0 +

Nf
∑

j=1

{

wk
cj cos(jωt) + wk

sj sin(jωt)
}

, (18)

where wk
0
, wk

cj , w
k
sj are unknown vectors and Nf the order of the truncation of the Fourier

series.
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We substitute Eqs.(17) and (18) into Eq.(16). Following the principle of the harmonic

balance, we equate the constant terms and coefficients of the terms cos(jωt), sin(jωt) of the

both sides. Then, we obtain an equation of the form

Akzk = b, (19)

where zk is an unknown vector obtained by arranging the coefficient vectors in Eq.(18),Ak a

known matrix determined from the coefficient matrices in Eq.(16), b a known vector obtained

by arranging the coefficient vectors in Eq.(17). Concrete expressions of these vectors and

matrix are omitted here. Solving Eq.(19), we can have zk, and hence wk. Substituting the

obtained wk into Eq.(15), we can have tk,mk. This completes the kth iteration.

Using the obtained solution for the kth iteration, we can obtain the solution for the

(k+1)th iteration in the same way as shown above. We repeat this procedure until the solution

converges.

PROPOSITION OF A DETECTION TECHNIQUE

Now we consider to develop a detection technique of breathing cracks in a frame structure.

We assume that dimensions, Young’s modulus, density, damping coefficients are known.

We take N measurement points on the frame structure, and measure steady-state re-

sponses of deflections, tensions and bending moments to the periodic excitation of the form

of Eq.(17). These quantities can be easily measured by displacement sensors, strain gages.

We denote the measured deflection, tension and bending moment at the ith measure-

ment points by vm
i , T

m
i andMm

i , and introduce vectors z
m
i defined by

zm

i =
{

vm
i Tm

i Mm
i

}T
(i = 1, 2, · · · ,N). (20)

Since the measured data zm
i are steady-state responses, they can be expressed in the Fourier

series of the form

zm

i = Zm

0i +
∑

n=1

(

Zm

ni cos nωt + Zm′

ni sin nωt
)

. (21)

The coefficient vectors in the above equation are known quantities obtained from zm
i .

Next we calculate the response of the frame structure by the method presented in the

previous chapter. In the calculation, we take as nodes the measurement points. In the follow-

ing, we express the obtained responses corresponding to the experimental data Zm

0i, Z
m

ni and

Zm
′

ni by Z0i, Zni and Z′

ni, respectively. Using these quantities, we introduce the quantity J

defined by

J =
1

2

N
∑

i=1

{

(

Z0i − Zm

0i

)T(

Z0i − Zm

0i

)

+
∑

n

(

Zni − Zm

ni

)T(

Zni − Zm

ni

)

+
∑

n

(

Z′

ni − Zm

ni

)T(

Z ′

ni − Zm

ni

)

}

(22)
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The quantity J is the error between the analyzed and measured responses. Next we consider

to determine α, αU and αL which minimize J . As mentioned above, α, αU and αL must

satisfy Eq.(9). Thus, the problem of detection of breathing cracks is reduced to the problem of

finding α, αU and αL which minimize the objective function J subjected to the constraints

Eq.(9). Such problems can be solved by, for example, the gradient projection method. In the

elements corresponding to non-zero components of the obtained α,αU,αL, breathing cracks

exist

In the above technique, if we take for analysis the same number of nodes as that of

the measurement points and if the number of nodes is small, there may be cases in which

the cracks are not detected correctly due to the problem of accuracy in the analysis. Even if

the detection can be done correctly, it is impossible to specify smaller regions where cracks

exist than the element size. Hence, in general, the number of nodes in the analysis is taken

larger than that of the measurement points. In this case, if we try to determine the increase

rates of the flexibility of all elements, computational cost becomes high. Thus, we first impose

the condition that α, αU, αL of some elements are the same, and apply the above detection

technique. Then, in the region in which α, αU, αL are not zero, we relax the condition and

increase the number of elements in which αU, αL are treated independently. In addition, we

take only α, αU, αL in this region as unknowns. Repeating this procedure appropriate times

enables us to detect cracks finely suppressing the increase of computational cost.

SUMMARY

In this paper, a technique for detection of breathing cracks in a planar frame structure was pre-

sented. First, we derived the governing equations of a planar frame structure with breathing

cracks, using the finite element method based on the mixed variational principle. In the equa-

tions, we modeled the crack by a uniform increment of the element flexibility, and introduced

as the crack parameter the increment ratio of the flexibility. Then, we presented a method for

analysis of the steady-state vibration of the frame structure. Based on the presented analysis

method, we proposed a method to determine the crack parameters.
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