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Abstract
In the field of structural-acoustics, there is considerable interest in finding an
efficient method for computing fluid-coupled mode shapes, resonance frequen-
cies, and loss factors.  The computations are difficult because the acoustic field
created by a vibrating structure is generally not a simple function of frequency,
making the associated eigenvalue problem nonlinear.  A state-space formulation
has been used previously to solve structural-acoustic eigenvalue problems for
combined finite element / boundary element analyses.  In this paper, the formula-
tion is adapted for the software package ARPACK by generalizing the previous
results for arbitrary polynomial order and developing simple formulas for the
matrix inverse and matrix-vector multiplication required within ARPACK.  Using
an example problem of a circular cylinder, it is shown that higher order polyno-
mial expansions can actually increase the overall computational efficiency be-
cause they allow a wider frequency range to be represented during a single itera-
tion, resulting in fewer subdivisions of the overall frequency range.

INTRODUCTION

The acoustic field created by a vibrating structure is generally not a simple func-
tion of frequency, so that the associated eigenvalue problem is nonlinear.  Giordano
and Koopmann 1 derived a solution to the eigenvalue problem by representing the
surface pressure coupling using boundary elements and assuming that each term
in the resulting pressure-to-velocity transfer function matrix could be approxi-
mated over frequency bands using cubic polynomials.  By adding the acoustic
pressure field into the equations of motion and converting the eigenvalue prob-
lem to state-space, they showed that a solution for the fluid-coupled modes could
be computed.  Subsequently, Cunefare and De Rosa 2 improved the method slightly
by simply writing the boundary element matrices in terms of pressure-to-displace-
ment transfer functions, reducing the state-space system to three times the num-
ber of displacement variables rather than four.
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In isolation, these papers seem to indicate that the state-space analysis is
effective, but computationally-inefficient, since the matrices to be analyzed are
three or four times as large as the number of displacement degrees-of-freedom
(either in physical or modal coordinates).  However, in the extended analysis in
his thesis, Giordano 3 shows that the eigenvalue problem can be solved efficiently
using a shifted inverse iteration algorithm, requiring only a single matrix inverse
of the size of the number of displacement degrees-of-freedom.  In this form, the
matrix inverse dominates the solution times and the computational efficiency is
not heavily dependent on the size of the state-space system of equations.  Giordano
goes on to suggest that the basic state-space methodology could be extended to
higher order polynomials, and that frequency normalization might be required to
prevent the coefficients from exceeding machine precision.

In this paper, the numerical method developed by Giordano will be re-
examined, with the goal of extending the analysis and simplifying its application
within ARPACK 4.  This numerical package is ideal for the problems under con-
sideration because the input matrices can be unsymmetric and complex-valued,
and it is designed to compute a limited number of eigenvalues near a specified
value.  The main contributions of the present work will be to generalize the re-
sults in Giordano’s thesis for arbitrary polynomial order and to develop simple
formulas for the matrix inverse and matrix-vector multiplication required within
ARPACK.  Further, it will be shown that higher order polynomial expansions can
actually increase the computational efficiency of the algorithm because they al-
low a wider frequency range to be represented during a single iteration, resulting
in fewer subdivisions of the overall frequency range.

INVERTING THE STATE-SPACE MATRIX

The analysis begins from the equations of motion for a vibrating structure includ-
ing surface pressures due to fluid coupling, which can be written as

K M A d f- + ( )È
Î

˘
˚ =w w2  , (1)

where K and M are the structural stiffness and mass matrices, respectively, A
represents the surface pressure forces due to sound radiation from a vibrating
structure, d is the displacement vector, and f is the input force.  The K and M
matrices are typically generated using a finite element analysis and the A matrix
can be generated using either finite or boundary elements.  Thorough discussions
of the methods for generating the matrices in these applications have been given
by Giordano 1, 3, Cunefare 2 and Fahnline 5.  In a practical implementation, the
matrices will be written in modal, rather than displacement, coordinates by ex-
panding the displacement in terms of the in vacuo structural modes.  Because the
fluid-coupling matrix A is an arbitrary (but continuous and smoothly-varying)
function of frequency, the associated eigenvalue problem is nonlinear.
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As was demonstrated by Giordano in his Ph.D. thesis, the eigenvalue prob-
lem can be linearized and converted to state-space by expanding each term of the
coefficient matrix as a polynomial function in w .  To minimize space require-
ments, quadratic polynomials will be used in the following derivation and the
results will be generalized for abitrary order subsequently.  Writing out the matrix
A as a polynomial in w  gives

A A A Aw w w( ) = + +0 1 2
2  , (2)

where K and M have been absorbed into A 0  and A 2 , respectively.  Post-multi-
plying by the displacement vector and noting that a time-derivative is equivalent
to multiplication by - i w  if d is time-harmonic, Equation (2) can be rewritten as

A d A d
A

d A d A d A d A dw w w( ) = +
-

-( )- -( ) = + -0
1

2
2

0 1 2i
i i . (3)

Pre-multiplying by - -A 2
1  and taking f = 0, Equation (1) reduces to

d A A d A A d- - =- -i 2
1

1 2
1

0 0  . (4)

Writing the matrix system as a standard eigenvalue problem in state-space gives
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To solve this eigenvalue problem using ARPACK, the matrix in square backets
has to be inverted and multiplied by a vector during each iteration.  Because the
solution of a densely-populated matrix system is proportional to its size cubed, it
is very inefficient to directly invert the state-space matrix, especially if higher
order polynomials are used in the expansion.  However, since the solution has
been assumed to be time-harmonic, the displacement derivatives are not indepen-
dent variables, and it is possible to write the derive a semi-analytical solution for
the inverse by partitioning the matrix into submatrices.

To start, the inverse can be written in terms of its submatrices as
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where the submatrices of A are known and those of B are to be determined.
Multiplying the two matrices in Equation (6), the second row of the result yields



J. B. Fahnline

- - =B B11 21 0iw    and   - - =B B I12 22iw  . (7)

Solving for B11  and B12  and substituting into Equation (6) gives
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Because each column of the inverse depends only on a single matrix, it is possible
to directly solve for the submatrices.  This is true regardless of the number of
terms included in the polynomial expansion, and thus a similar technique can
always be used to compute the inverse.  Solving for B21  and B22  gives

B = A A21
1

2- ( )-w    and   B = A A A22
1

1 2i w w( ) +( )-  . (9)

The submatrices of the matrix inverse can now be computed without having to
invert the full state-space matrix, making this method computationally-efficient.

To be able to use ARPACK to compute solutions to eigenvalue problems,
the user is supplied an input vector and he multiplies it by the matrix inverse and
returns the result.  For the present problem, it is not necessary to actually con-
struct the matrix inverse and perform the multiplication.  Using a quadratic poly-
nomial expansion, the inverse can be written in more condensed form as
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Post-multiplying by the input displacement vector then yields
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In this form, several matrix-vector multiplications are performed, but the matri-
ces are only the size of the number of displacement degrees of freedom.

GENERALIZED FORMULAS

The preceeding analysis can be performed for several polynomial orders and gen-
eralized by induction.  Taking N to be the exponent for the highest order polyno-
mial for w , the result for the matrix inverse is given as
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Similarly, the result for the matrix-vector multiplication can be generalized as
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In Equation (13), the dm  are the components of the displacement vector in state-
space, and thus d dN = , d dN- =1 , etc.

In his thesis, Giordano also discusses the possibility of normalizing the
frequency scale for higher order polynomial expansions.  Numerical experiments
have verified that frequency normalization is necessary for fourth order polyno-
mials and higher.  Normalizing the frequency by the upper limit of the range for
the expansion as W = w w max , the polynomial expansion can then be written as

A A A AW W W( ) = + ( ) + ( ) +0 1
2

2
2w wmax max ...  . (14)

Thus, the only change that is required is to multiply the input matrices by the
appropriate power of w max .  After solving for the eigenvalues in terms of W ,
those for the original problem can be determined as w w= max W .  These formu-
las have been tested for different polynomial orders and they yield nearly identical
results for the resonance frequencies, mode shapes, and damping loss factors.

ELIMINATING NUMERICAL ARTIFACTS

In general, it is not possible to represent the acoustic matrix as a simple polyno-
mial function over the entire frequency range of interest, and it must be subdi-
vided.  Thus, a separate eigenvalue problem must be solved for each smaller
frequency range, and the numerical efficiency is enhanced by maximizing the range
for each of the subdivisions.  Because polynomial interpolation is very fast and
yields a simple accuracy estimate as discussed by Press, et al. 6, it is possible to
test several frequency subdivisions and optimize the range to yield a specified
accuracy for a given polynomial order.

The numerical efficiency can also be increased by choosing a reasonable
lower bound on the frequency range to search for eigenvalues.  Because the eigen-
value problem is formulated using in vacuo modes as basis functions, the resistive
component of the acoustic matrices can have higher order frequency dependence
at low frequencies.  For example, the power output of a quadrupole source is
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proportional to w 4 at low frequencies, whereas that of a monopole source is
proportional to w 2.  Thus, a lower order polynomial would not be able to prop-
erly represent the sound radiation from a quadrupole at low frequencies. This
problem can be alleviated somewhat by choosing a reasonable lower bound on
the frequency range, preventing the program from having to solve numerous eigen-
value problems within a frequency range where none exist.

There is some discussion in both Giordano’s thesis and the papers by
Giordano and Koopmann, and Cunefare about how to discriminate between ac-
tual modes and numerical artifacts.  One method for making the identification
process very reliable is to solve the eigenvalue problem several times using differ-
ent polynomial orders.  The resonance frequencies and damping levels for the
actual modes are consistently repeated, while the numerical artifacts are not.  In
the present implementation, the eigenvalue problem is solved three times in each
subdivision of the frequency range, using one less and one more polynomial terms
than the number specified.  For example, if the polynomial order is specified as
four, the problem is solved using three, four, and five interpolation frequencies,
with the interpolation accuracy determined using the lowest order polynomial.

EXAMPLE OF A CIRCULAR CYLINDER

As an example problem to test the accuracy of the formulas and to assess the
efficiency of the computations, fluid-coupled resonance frequencies and modes
shapes were calculated for a thin circular shell and compared to experimental
measurements.  In the experimental configuration, the shell is mounted to two
solid metal endcaps, with rubber o-rings providing a water-tight seal between the
interior and exterior volumes.  A heavy steel bar runs along the centerline of the
cylinder and through the endcaps to keep the cylinder in proper alignment and to
support its weight.  The shell’s radius, length, and thickness are 6.38 inches,
46.75 iinches and 0.2047 inches, respectively, and it is made of steel.  Numerical
simulations and experimental measurements were performed for conditions (1) in
air, (2) with air inside the shell and water outside, and (3) with water both inside
and outside.  Since the boundary conditions for the o-ring connections proved
difficult to simulate numerically, the structural model was tuned to give the mea-
sured in-air resonance frequencies of the shell.  The finite and boundary element
models are shown on the left and right sides of Figure 1, respectively.

Figure 1.  Finite element (left) and boundary element (right) models of the cylinder.



ICSV13, July 2-6, 2006, Vienna, Austria

In the figure, the elements colored red in the finite element mesh are assigned the
properties of rubber and are meant to simulate o-rings.  The encaps are assumed
to be motionless and are not included in the finite element model.  In the bound-
ary element model of the interior acoustic field, the cavity does not extend into
the endcaps, shown in blue on the right side of Figure 1.  One hundred and seven-
teen in vacuo modes from 0-3200 Hz are included as basis functions.

To demontrate the accuracy of the numerical computations, Table 1 lists
experimental measurements and numerical simulations for the structural reso-
nance frequencies of the shell, where N and M refer to the number of full waves
around the circumference and half waves along its length, respectively.

Table 1.  Measured and computed resonance frequencies for the cylinder.

Overall, the numerical simulations match the experimental measurements very
well, especially considering the large shifts in the resonance frequencies when the
shell is immersed in water.  For the case with water both inside and out, acoustic
resonances occur in the fluid within the cylinder, resulting in peaks in the matrix
A.  Near these frequencies, the polynomial expansion is limited to very small
frequency ranges, so that numerous eigenvalue problems must be solved.  Also,
spurious eigenvalues are found near the acoustic resonances even when only the
consistent roots are retained for several polynomial orders.  Knowing the fre-
quencies for the acoustic resonances, it is possible to eliminate the spurious roots,
leaving the results shown in the table.

For the timing studies, the same computer was used for all the calulations,
and the system clock was monitored during the program execution.  As one might
expect from the discussion in the previous paragraph, the analysis becomes inef-
ficient near acoustic resonances because only a small frequency range can be
represented accurately using low order polynomials.  The results of the timing
studies are listed in Table 2.

N

2

3

4

5

M

1

2

1

2

1

2

1

276

530?

456

660

827

912

1321

13752

F µ  (Hz)

Air, Exp.

6 1 1927

19742

128

264

225

340

450

502

771

806

F µ  (Hz)

Exp.

1184

1218

122

265

226

335

453

507

791

831

F µ  (Hz)

Num.

1228

1265

97

220

176

261

350

393

608

639

F µ  (Hz)

Exp.

943

977

90

197

169

251

345

386

611

642

F µ  (Hz)

Num.

977

1008

Air Inside, Water Out Water Inside and Out



J. B. Fahnline

Table 2.  Results of the timing studies.

The results show that the computation time is more controlled by the number of
eigenvalue problems solved rather than the size of the state-space matrices.  Higher
order interpolation is beneficial when more of the frequency range can be repre-
sented in each eigenvalue analysis.  The overall conclusion is that the state-space
solution of the eigenvalue problem is computationally efficient as long as the
variations in A can be represented using low order polynomials.  Otherwise, it
may be more efficient to model the interior acoustic field using finite elements.

CONCLUSIONS

In this paper, the state space algorithm for computing eigenvalues and eigenvec-
tors has been generalized for arbitraray polynomial order.  Formulas were de-
rived for the inverse of the state space matrix and its multiplication by an input
vector.  This allows the eigenvalue problem to be solved efficiently using ARPACK.
An example problem was used to show that the computational speed of the eigen-
value solution can actually be increased using higher order polynomials because a
wider frequency range may possibly be represented during a single analysis.
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# Interp. Freq. Water Outside

Computation Time (sec)

4 (3, 4, 5) 3 x 321 4685

5 (4, 5, 6) 3 x 124 2569

6 (5, 6, 7) 3 x 80 3029

7 (6, 7, 8) 3 x 72

3 x 57

3 x 14

3 x 7

3 x 4 4500

832

290

265

250

# Eigenvalue Problems

Inside & Out Water Outside Inside & Out


