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Abstract 
A general representation scheme for solutions of Lilley’s equation, along with a particular 
expression for the source terms, is used in order to establish a relationship between the far 
field spectra of hot and cold jets, which are used as reference. The method is such that no 
precise knowledge of the actual Green’s function is required, but only coefficients which are 
introduced in the computation of its space derivatives, and which can be expressed in terms 
of Mach number, temperature ratio, polar angle and frequency. High- and low-frequency 
limiting forms for plug-flow coefficients are used, along with an expression providing a 
smooth transition. The use of such coefficients is justified since effects of mean velocity and 
temperature gradients are explicitly accounted for in the formulation. The model predicts that 
three different components are present in the far field of hot jets, which is supported by the 
comparison with experimental data for a polar angle of ninety degrees.  

INTRODUCTION 

The prediction of jet noise depends both on reliable models and on turbulence 
measurements, which supply the required input data. Lilley’s equation [1], which 
considers adequately mean flow effects in the generation and propagation of sound, 
provides a relatively simple and comprehensive model (although much more complex 
than Lighhill’s analogy in what regards solution), being used in most computations 
(see e.g., [2, 3]). A general scheme for representing solutions of Lilley’s equation was 
developed by Musafir [4, 5], the quantities to be modelled or measured, however, 
depending on the representation for the source terms adopted, many different ones 
existing (see e.g [6]). The present paper uses this general scheme along with a 
particular representation of the source function, in order to relate the far field spectra 
of cold and hot jets.  
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THE MODEL: EQUATION AND SOLUTION 

By considering ‘generalised’ external sources of ‘volume’ (due to the addition of 
mass or heat) and momentum, given respectively by q and f *, the inhomogeneous 
linear wave equation describing sound generation and propagation in a parallel mean 
flow with uniform mean pressure is given, if f * is replaced by f – ∇⋅T, so that an 
external force distribution in dipole form, – ∇⋅T, corresponding to the stress 
distribution T, is explicitly accounted for in addition to the pure external force field f, 
by  
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where π represents the acoustic variable,  is the local mean value of the squared 
sound speed c

2
0c

2, U = U(x2, x3) is the mean flow velocity, which is assumed to be 
purely axial and incompressible, and 10 DD xUtt ∂∂+∂∂= . 

By using the auxiliary problem,  
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which can be obtained from equation (1) if ∂/∂x1 is replaced by –(α/c∞)∂/∂t, where c∞ 
is the far field value of c0 and α is treated as a ‘constant’ (to be identified, in the far 
field solution at x, with x1/|x| = cos θ, where θ is the angle with the x1 axis) and some 
rearrangement is performed, it is possible to show that the solution of equation (2)  
and hence, the far field solution of equation (1), can be represented, if both U and c0 
are assumed to depend only on a single (transverse) coordinate, xt, as [4, 5]  
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where G = G(x, t| y, τ) is the Green’s function corresponding to the wave operator in 
equation (2); C is the Doppler factor 1 – M cos θ, where M = U/c∞; (∇∇)0G stands for 
∇∇G with the second transverse derivative of G, ∂2/∂yt

2 (which can be written in 
terms of other derivatives of G), replaced by the expression applying when ∇M = 0 = 
∇c0; ∇* is the gradient operator with the transverse component replaced by zero; T tt is 
the component of T with both indexes in the transverse direction. This representation 
has the advantage that cancelling introduced by the second transverse derivative of G 
is already accounted for.  

A compact exact expression for the equivalent source terms was derived by 
Goldstein [7] using π = (p/p∞)1/γ –1, where p is pressure, p∞ is a reference value and γ 
is the specific heat ratio. The obtained equivalent sources correspond to T = 
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(1 + π′)uu, f = – (c2)′∇π′ and q = 0, where u is the velocity fluctuation vector and 
primes are used to denote fluctuations of other variables. The expression for f poses 
the difficulty that the quantities involved are not as easily measured as velocity 
fluctuations, no information on the required correlations being available. This term, 
however, although most likely unimportant for cold jets, cannot possibly be neglected 
for hot jets, when temperature fluctuation become large. Other recent formulations 
also derived by Goldstein [3, 8] have the feature that temperature effects in the source 
term are expressed, at least in part, by the momentum source term f * = – (ρuu), 
where ρ is density, which can be expanded, as pointed out in [6], as ρuu – 

⋅∇2
0c

⋅∇ 2
0c

( )uu2
0cρ⋅∇ , corresponding, respectively, to the f and T source terms in equation (1). 

The corresponding q, however, is non-zero, its expression depending also on the 
mean flow. A simpler equivalent expression was attained by Musafir [6], with p′ as 
dependent variable (as in [8]), in which f* is unchanged and q = (γ –1)u⋅∇p′ – 
∇⋅[ρu(c2)′]. The first part of this q is possibly negligible, both for cold and hot jets, at 
least for low Mach numbers, and will be discarded. As for the second part, which 
describes a volume dipole source, although it is surely affected by temperature, it will 
also be, for the moment, discarded, on the assumption — to be revised latter — that, 
since its efficiency is roughly like that of a momentum term in dipole form (usually 
called ‘quadrupole’), it will be less relevant than the momentum term f = ρuu, 
which has a dipole-like efficiency. With these hypotheses, the whole field can be 
calculated from the knowledge of the correlations of u

⋅∇ 2
0c

iuj and of mean flow properties, 
provided the relevant Green’s function is known. By inserting the corresponding 
forms of T and  f in equation (3) and rearranging, one obtains, for q = 0 
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The above expression shows that the source components that will be explicitly 
affected by the mean shear are the very same that will be affected by the mean 
temperature gradient, contrary to what may be suggested by equation (3).  
 Since equation (4) considers explicitly the effects of the mean velocity and 
temperature gradients, it is acceptable to approximate G by the corresponding ‘plug 
flow-homogeneous medium’ one, discussed in [9] (see also [10]). In this case, the 
space derivatives of G are given essentially by directivity factors, which accounts for 
mean flow effects, multiplied by (1/c∞)∂/∂t, in addition to the appropriate retarded 
time and to the amplitude factor (4π|x|)-1. This property can be used to express the 
mean squared value of p′ (or the corresponding frequency filtered form) in simple 
terms.   

If density fluctuations in 2
0cρ  are neglected and the sources are assumed to 

move with a Mach number Mc (which introduces the corresponding convection 
Doppler factor Cc = 1 – Mc cos θ, P ≡ | |(4π|x|), where  is the Fourier transform of 
p′ is given, considering a circular jet and the source coordinates y = (y

p~ p~

1, r, φ), by 
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where k = ω/c∞, ~ denotes the Fourier transform, the matrix F contains the flow 
factors Fij stemming from (∇∇)0G and g1 and gφ are those stemming from ∇*G.

The needed spectral function is actually the normalized Fourier transform of the 
mean squared value of p′ which, if C and Cc are assumed to be identical, can be 
calculated from the volume integration of  
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

θ
+⎟

⎠
⎞

⎜
⎝
⎛θ><++ω −−

φ
−

22
0

2
0

2
0

2
0

1
2

2222
1

224

d
d1

d
d

d
dcos4

d
dcos4

r
c

cr
M

r
c

c
C

r
MCBgAgCkDkH

   (6) 
where H(ω) represents the spectral distribution of the Fourier transform of the volume 
integral (over the source coordinate difference, ∆y) of the fourth order two-point 
correlation ),(),( 2

1
2
1 ttutu ∆+∆+ yyy , self- or cross-correlations involving other 

components being assumed to differ by a numerical factor; D stands for the non-
dimensional directivity of the terms associated with (∇∇)0, being a function of angle 
θ, nominal jet Mach number MJ, frequency ω and temperature ratio R = 

,22
Jcc∞ where  is the nominal jet temperature; A and B are coefficients describing 

the relative importance of the (Fourier transformed) autocorrelations terms associated 
with g

2
Jc

1 and gφ and < > denotes the average over the far field azimuthal angle.   
The radial derivatives of mean velocity and temperature may also affect the k-

dependence in the above expression. It is known that dU/dr scales roughly like ω, the 
proportionality coefficient, β, being around 4.5 [11]. Also, there is no experimental 
evidence of a ‘dipole-like’ behaviour (i.e., a k2 dependence for low frequencies) for 
cold jets, what supports this scaling. As for d /dr, it can be approximated by 
εδ/d, where 

2
0
−c 2

0c
( ) ( )112 +−=δ RR , d is the jet diameter and ε is a proportionality factor 

which, most likely, depends on the axial coordinate y1. This dependence, however, is 
probably more complex than the corresponding one in dM/dr — if it were identical, 

d /dr would be also locally proportional to k and the resulting form of 
expression (6) would depend on frequency only through H, D and g

2
0
−c 2

0c
φ, since, then, all 

terms would be multiplied by the same k4 factor. It is expected, however, that dipole-
like noise, introducing a k2 dependence, be also present in hot jets, as predicted in [2]. 
In order to account for this feature, and to verify the adequacy of the hypothesis, it 
will be assumed that ε can be written as ( ) JMkd 21 ε+βε=ε  where ε1 and ε2 are 
constants; the factor 1/MJ is included from the reasoning that a certain similarity 
between d /dr2

0
−c 2

0c  and M-1dM/dr is to be expected. Thus, the ε1-part gives origin to a 
quadrupole-like term, while the ε2 one, to dipole noise. Both components, however, 
are associated with the ‘dipole’ flow factor .  >< φ

2g
With these hypotheses, expression (6) is written as  
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which permits, if H(ω) is not affected by heating and the abandoned source terms are 
negligible, determining far field spectra of hot jets from those of cold jets, provided 
D, A, B, ε1 and ε2 are modelled.  

The model shows that hot jets spectra are affected by three types of terms, 
which represent: 1) quadrupole noise stemming from the same terms as in the cold jet 
case, but modified by the temperature dependent flow factors, and which will be 
referred to as ‘old’ quadrupoles; 2) dipole-like noise, stemming from the mean 
temperature gradient and 3) ‘new’ quadrupole noise, also originating form the mean 
temperature gradient, but modified exclusively by ‘dipole' flow factors. There is also 
some coupling between the terms. Here, it is convenient to re-examine the neglect of 
the volume source term q – ∇⋅[ρu(c≅ 2)′]. Since it can be shown that it scales 
similarly as the ‘new’ quadrupole term, it should be included in the model. This can 
be done, in a somewhat crude way, by increasing the value of ε1 (and assuming, 
implicitly, that the spectra of the self- and cross-correlation functions involving the 
components ρui(c2)′ are similar to H(ω)). However, no interference between this 
additional ε1 contribution and that of the ε2 term would exist, what can be accounted 
for, e.g., by removing the factor 2 in the corresponding coupling term(s), in order to 
consider that only one half of the ‘new’ quadrupole-like noise would interfere with 
dipole noise (or with the mean shear dependent part of the ‘old’ quadrupole one).  

The simpler case is for θ = 90o, when, for the cold jet (R =1) D can be taken as 
equal to unity for all values of ω and M. If the quantities in expression (7) are taken as 
being representative of the whole jet, and the mentioned reduced interference is 
considered, the relationship between the corresponding power spectral density, W, of 
hot and cold jets at θ = 90o is given, since g1 will always include the factor cos θ, by 
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COMPARISON WITH EXPERIMENT 

The model was tested against recent experimental data obtained at NASA Glenn 
Research Center [13], which consists of sets of 1/3 octave spectra for a d = 5.08 cm 
jet, for different Mach number (0.35 ≤ MJ < 1.5) and temperature ratios (0.8 < R < 3.0).  

At this stage, only the case θ = 90o was used for comparison. For this value of 
the polar angle, D depends on temperature and frequency. In the low frequency limit, 
it depends also on the relative proportion of azimuthal modes 0 and 2 emitted, as is 
implied by the Fij derived by Dowling et al. [9]. Since the dependence on this 
quantity is not very pronounced, it will be considered that both modes are equally 
important, which can be shown to lead to the low frequency expression, DLF, given by 
equation (9a), where R1 = (R + 1)/2 is taken to represent the temperature ratio 
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concerning the reference ‘plug flow-homogeneous medium’; the high frequency 
form, DHF (taken from equation (5.13) in [10]), is given by (9b):  
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In order to provide a smooth transition, it will be assumed that the general 
expressions for D and can be approximated by  >< φ

2g
 

n

n

kda
XkdaXX

)(1
)( HFLF

+
+

= ,     (11) 

 
where X stands for the desired quantity and a and n are constants.  

Modelling of the velocity correlations [12] suggest for B a value around 0.75, 
which will be considered here; β was taken as 4.5 [11]. Somewhat arbitrarily, n = 2 
and a = 1/4 (so that the transition depends on (kd/2)2) were chosen. In order to reduce 
the number of adjustable constants, best fit with ε2 = 1 – ε1 was sought.  

Fig. 1 shows measured sound pressure level data for both cold and hot (R = 2.9) 
situations, for different Mach numbers, along with predicted results for ε1 = 0.35. 
Also shown are the contributions of ‘old’ and ‘new’ quadrupole noise, which are 
obtained, respectively, by setting δ and ε2 to zero in equation (8). The contribution of 
dipole noise — the coupling with ‘new quadrupoles’ included — is the remaining 
one. Strouhal number St is calculated as St = kd/(2πMJ). The two lower frequency 
points for the cold jet at MJ = 0.35, absent from the original data, were estimated from 
the normalised spectra for higher Mach numbers.   
 The agreement is excellent at high frequencies (except for the lower MJ case), 
results showing that without the ‘new quadrupoles’ the high frequency behaviour 
could not be reproduced. They also show that, for low frequencies, this contribution 
seems to be superfluous, although in most cases (i.e., excepting the higher MJ 
situation) dipole noise is essential to prediction. In fact, the dipole distinctive 
behaviour at low frequencies — a rise in the spectrum — is seen to depend on MJ in a 
stronger way than assumed in the model, since it is more pronounced at MJ = 0.35 and 
practically inexistent at MJ = 0.9. In the experimental data, this behaviour is clearly 
present for all temperature ratios larger than unity for the lower Mach numbers (MJ = 
0.35 and 0.4), for R > 2 for MJ = 05, and, for MJ = 0.6 and 0.7, only for the higher 
measured R, (i.e., R = 2.9). For higher MJ, it is practically not seen anymore. Another 
important aspect is that the existence, sometimes, of a second hump in the hot jet data 
cannot be attributed to dipole noise, being instead, a feature of the temperature 
dependent flow factors, mostly of the quadrupole one: for θ = 90o, D imposes a 
significant reduction in high frequencies and a small increase in the lower ones, as 
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shown in equation (9); the variation of with temperature, on the other hand, is 
much less pronounced.  

>< φ
2g

 

  
 

  
 

Figure 1.Jet noise third octave band sound pressure level for θ = 90o. 
 Measured data [13]: � cold, • hot (R = 2.9); Predicted (eq. (8)): ♦  ε1 = 0.35, ε2 = 0.65, 

 ⋅⋅⋅⋅  exclusively ‘old’ quadrupoles (δ = 0), ⋅-⋅⋅-⋅ ‘old’ +’ new’ quadrupoles (ε2 = 0).  
 
By altering the value of ε2 (and, eventually, of ε1) good agreement can be obtained for 
all cases, sometimes with a little the excess of “new quadrupole noise” at low 
frequencies. It was verified that, in general, reducing the dipole-‘new quadrupole’ 
coupling increases the low frequency agreement.  

An aspect that deserves attention is that the ‘new quadrupole’ noise — be it 
originated from the mean temperature gradient term or from the volume dipole term 
(or from both) — may seem to be a feature of expressions of Lilley’s equation closely 
related to Goldstein’s formulation of 2002 [8], as is the case of the one used here. In 
all earlier formulations [2, 4, 7], the ‘temperature’ term is expressed exclusively as a 
momentum source term, which is usually expected to generate only dipole-like noise. 
The contradiction, however, is only apparent since, in these cases, the ‘temperature’ 
source term is always expressed in what might be called ‘nearly higher-order 
multipole form’, being of the type f = ψ∇ξ, which can be written as f = ∇(ψξ) – ξ∇ψ. 
At higher frequencies, the higher order component, which corresponds to the 
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equivalent stress distribution Tij = – (ψξ)δij, takes over, and the consequence is that 
more quadrupole noise than would be classically expected (see, e.g., [2]) is present in 
the far field. At lower frequencies, the temperature term does have the expected 
dipole-like behaviour, which is clearly discernible, except for higher Mach numbers.  

CONCLUSION 

 A simple model relating the spectra of cold and hot jets was developed, having 
been tested against experimental data for θ = 90o. Although results are highly 
dependent on the modelling of the mean temperature profile, the comparison is quite 
promising. In the present stage, the model, which attempts to describe the jet by 
considering a single ´typical’ point source, is but a crude approximation which, 
however, seems to have captured the important features of sound generation in hot 
jets. It is expected that more detailed computations based on this approach, but 
considering the contribution of the different jet regions and detailed information on 
temperature profiles, may lead to significant improvement.   
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