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Abstract 
An analytical model is developed for the scattering of acoustic waves from an immersed 
transversely isotropic rod covered by a cylindrical isotropic cladding. The mathematical 
formulation is derived for the far-field backscattered amplitude spectrum resulting from 
oblique insonification of the clad rod. It has been observed that when interacting with 
mechanical waves, transversely isotropic materials show two different behaviors. 
Consequently, they can be classified in two groups as type I and type II. In this paper, the 
frequency spectra and phase diagrams of these two types of transversely isotropic cylinders 
are studied. It is shown that in type I, similar to isotropic materials, at incidence angles larger 
than the second critical angle, no elastic wave can penetrate into the cylinder and the incident 
wave is completely reflected. Therefore, beyond the second critical angle, there is no 
resonance frequency in the frequency spectrum and phase diagram. However, in type II 
transversely isotropic materials, even beyond the second and third critical angles, resonance 
frequencies can be observed. 

INTRODUCTION 

Acoustic wave scattering from multi-layered cylindrical components has been 
considered in various applications such as the detection of underwater targets or 
nondestructive evaluation (NDE) of multi-layered components. 

Flax and Neubauer [1] developed a mathematical model for predicting the 
scattered pressure field of a two-layered absorptive cylindrical shell with different 
fluid media inside and outside. Gaunaurd [2] studied the acoustic wave scattering 
from a hollow elastic cylinder covered by a viscoelastic coating. The oscillations in 
the cylinder cross-section due to the resonances in the shell and coating materials 
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were calculated and plotted for the low frequency range. Sinai [3] computed the 
scattered pressure field from a fluid-loaded two-layered cylinder for a range of 
frequencies, material parameters, and emitter and detector functions.  

These studies are mostly concerned with isotropic cylinders and shells. In the 
NDE of cylindrical components, such as wires, rods, and pipes, the sample is usually 
transversely isotropic due to the processes used in manufacturing of these products. 
Transverse isotropy provides higher strength to stiffness ratio along the cylinder axis 
and hence, it is usually desirable. In 1996, Honarvar and Sinclair [4] used a normal-
mode expansion based on decomposition of displacement field to calculate the 
scattered pressure field of an immersed transversely isotropic cylinder. They also 
formulated the problem of scattering of an obliquely incident plane acoustic wave 
from an infinite solid elastic clad rod [5].  

In 2000, Ahmad and Rahman classified transversely isotropic materials into two 
groups as type I and type II [6]. They showed that an extra critical angle is observed 
in scattering of waves from type II materials. Honarvar and Sinclair showed that in 
type I materials, the normal stiffness along the cylinder axis is stronger than the 
normal stiffness in the isotropic plane and in type II materials it is the reverse [7]. In 
2005, the authors developed a mathematical model for the scattering of acoustic 
waves from an immersed clad rod with transversely isotropic core [8]. In this paper, 
scattering of acoustic waves from a clad rod with transversely isotropic core will be 
considered. Using the calculated frequency spectra and phase diagrams, the behavior 
of type I and type II transversely isotropic cylinders are studied.   

MATHEMATICAL FORMULATION 

In the mathematical model, an infinite plane acoustic wave of frequency πω 2/  
incident at an angle α  on a submerged isotropic clad-transversely isotropic rod of 
infinite length is considered, see Fig. 1. A cylindrical coordinate system ),,( zr θ  is 
chosen with the z  direction coincident with the axis of the cylinder. The pressure ip  
of the incident plane wave external to the cylinder at a point ),,( zrM θ  is represented 
by [9], 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1- Geometry of a plane wave obliquely incident on a submerged clad rod. 
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where αsinkkz = , αcoskk =⊥ and ck /ω= , c  is the compression wave velocity in 
the liquid medium outside the cylinder, nε  is the Neumann factor 

),( 0201 >=== nforandnfor nn εε , 0p  is the incident pressure wave 
amplitude, and nJ  is the Bessel function of the first kind of order n . The outgoing 
scattered wave pressure sp , at point M must be symmetrical about 0=θ  and, 
therefore of the form, 
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where )(1
nH  is the Hankel function of the first kind of order n , and nA  are the 

unknown scattering coefficients. The cylinder is composed of two parts: a 
transversely isotropic rod and isotropic cladding. In each part, the corresponding 
formulations are derived and necessary boundary conditions are applied to determine 
unknown coefficients. 
 

Transversely Isotropic Rod 

In a transversely isotropic rod, the displacement vector can be written in terms of 
three scalar potential functions χφ ,  andψ [10], 
  

),ˆ()ˆ( zz eaeu ψχφ ×∇×∇+×∇+∇=  (3) 

where a  is the radius of the rod. By substituting Eq. (3) in equations of motion and 
using general Hook’s law,  a set of three equations of motion in terms of ,,ψφ and χ  
is obtained [4]. To solve this set of equations, the normal mode expansion technique 
is used. Solutions should have the following forms:  
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Substituting Eq. (4) in Eq. (3) and applying it to the equations of motion indicates that 
the potential functions should be of the form:  
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where the parameters 2121 ,,, ssqq  and 3s  are defined in Ref. [4].  

Isotropic Cladding 

If the cladding medium is designated by subscript 2, then the displacement vector u  
can be written in terms of Helmholtz potential functions 2φ  (scalar) and 2A  (vector),  
 

222 Au ×∇+∇= φ   with  02 =∇ A.  (6) 
In the absence of body forces and substituting Eq. (6) in Navier’s Equation results in 
the following equations, 
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where λ  and µ  are Lame constants and ρ  is the density. By expanding Eq. (7), four 
partial differential equations in terms of potential functions are obtained for the 
cladding. In order to satisfy these partial differential equations, the potential functions 
must be of the following forms [5]:  
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2Lc and 
2Tc are the compression and shear wave velocities in the cladding material, 

respectively.  nnnnnn NMLKFE ,,,,,  are unknown coefficients. 

Boundary Conditions 

The boundary conditions (continuity of stresses and radial displacement) at the fluid-
cladding interface, ,ar = are:  
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where wρ  is the density of the surrounding fluid. At the core-cladding 
interface, br = , the corresponding boundary conditions are:  

21 ][][ θθ σσ rr = ; 21 ][][ rrrr σσ = ; 21 ][][ rzrz σσ =  (11) 

21 ][][ rr uu = ;  21 ][][ θθ uu = ; 21 ][][ zz uu =  
 
Inserting the potential functions from Eqs. (5) and (8) in Eqs. (10) and (11), results in 
the following system of ten linear algebraic equations, 
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Eq. (12) can be solved for nA  at any given value of the normalized frequency ka . The 
individual normal mode for resonances in the far field can be expressed as [11],  
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Moreover, the frequency spectrum and phase diagram can be calculated by  
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NUMERICAL RESULTS 

For studying wave scattering from type I and type II transversely isotropic cylinders, 
the frequency spectrum and phase diagram for immersed isotropic cylinder, type I 
and type II transversely isotropic cylinders for various incident angles are calculated. 
In figure 2 the frequency spectrum and phase diagram of an immersed isotropic 
aluminium cylinder at various incident angles are shown. The same parameters for 
cobalt and magnesium cylinders as type I transversely isotropic cylinders are plotted 
in figures 3 and 4. Figures 5 and 6 show frequency and phase spectra of titanium 
boride and zinc as type II transversely isotropic materials. As it can be seen in type I 
materials, figures 3 and 4, as well as isotropic materials, figure 2, at wave incident 
angles beyond the second critical angle there are no resonances in the frequency and 
phase spectra. While in type II cylinders, such as titanium boride and zinc as shown 
in figures 5 and 6, even for wave incidence angles beyond the second and third 
critical angles, resonance frequencies exist. The critical angles and elastic constants 
for the above materials are given in table 1.  
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Fig. 2-Frequency spectrum and phase diagram for an immersed aluminium (isotropic) 
cylinder at various incident angles 

Fig. 3- frequency spectrum and phase diagram for a cobalt (Type I) cylinder at various 
incident angles 

Fig. 4- Frequency spectrum and phase diagram for magnesium (Type I) cylinder at 
various incident angles 
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Table 1- Material constants and critical angles [6] 
 

)(N/m10Stiffness 211×  
o

cα  
Density 

)(kg/m3  
44c  33c  13c  12c  11c  Material Type 

**** 1740 0.1639 0.617 0.217 0.2624 0.5974 Magnesium Ι  
**** 8900 0.71 3.35 1.11 1.59 2.95 Cobalt Ι  
79.38 8642 0.196 0.509 0.41 0.42 1.16 Cadmium ΙΙ  
13.86 4500 2.50 4.40 3.20 4.10 6.90 Titanium 

boride ΙΙ  

45.39 7140 0.385 0.627 0.508 0.362 1.628 Zinc ΙΙ  
 

 

 

 

Fig. 6- Frequency spectrum and phase diagram for zinc (Type II) cylinder at various 
incident angles 

Fig. 5- Frequency spectrum and phase diagram for a titanium boride (Type II) cylinder 
at various incident angles 
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CONCLUSION 

In this paper, an analytical model is developed for the scattering of acoustic waves 
from an immersed transversely isotropic rod covered by a cylindrical isotropic 
cladding. The mathematical formulation is derived for the far-field backscattered 
amplitude spectrum resulting from oblique insonification of the clad rod. Using the 
frequency spectrum and phase diagrams, type I and type II transversely isotropic 
cylinders are studied. It is shown that in type I materials, similar to isotropic 
materials, at incidence angles larger than the second critical angle, no elastic wave 
can penetrate into the cylinder and the incident wave is completely reflected. 
Therefore beyond the second critical angle, no resonance frequencies are observed in 
frequency spectrum and phase diagram. However, in type II materials, even after the 
second and third critical angles, resonance frequencies can be observed in the 
frequency spectrum and phase diagram.  
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