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Abstract 
This paper describes a case of vibroacoustic testing of a gearbox. Especially conditions of a 
rolling bearing in the gearbox were analyzed and monitored. The aim of this work was 
recognition and classification of different types of rolling bearings faults. This work is 
focused on spectral analysis used for feature extraction. There were compared different ways 
of power spectral estimation during various load conditions and various revolution rates. The 
described feature extraction took into account changes of energy of the vibration signal after 
reassembling the tested gearbox. A vibration signal of a rolling bearing described by its 
spectral amplitude features was classified by two simple common-known neural classifiers: 
Multilayer perceptron and Radial basis neural network.  

INTRODUCTION 

Rolling bearing conditions monitoring has received considerable attention for many 
years because the important part of problems in rotating machines is caused by faulty 
of rolling bearings. This paper basically describes rolling bearing inspection system 
shown in Fig. 1. There are basically two ways for rolling bearing monitoring: either 
the traditional time domain techniques inspecting overall vibration energy e.g. peak 
level, RMS value, and crest factor [1], or else spectral analysis which enables to 
estimate the source of vibration. 

A number of frequency domain techniques has been developed which could be 
used to detect the fault, e.g. spectral, cepstral, and wavelet analysis. This paper was 
concerned on rolling bearing diagnostics using spectral analysis, rather using different 
spectrum estimation methods. Obtained condition indicators (features) were classified 
by two neural classifiers: Multilayer perceptron and Radial basis neural network. 

The classical failure mode of rolling bearings is a localized defect. A piece of 
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contact surface is dislodged in that case, mostly by fatigue cracking in the material 
during cyclic pressing. There are caused beats if a roller passes through this crack. 
This effect generally results in bursts of acoustic emission and sequentially in 
vibration. This takes effect in frequency spectrum of gearbox vibration by increase in 
corresponding frequencies. Defects at different locations of a bearing (inner race, 
roller and outer race) can be characterized by different own characteristic defect 
frequency. Assuming pure rolling contact and negligible elastic deformation of 
bearing component, characteristic defect frequencies can be calculated from the 
geometry and speed of a bearing using the equations (1) to (3) [1].  
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where fo, fi  and  fb are characteristic frequencies of outer race defect, inner race defect 
and defect on a ball or roller. BD is a roller diameter, PD is a bearing pitch diameter, 
fr is rotating speed, β is a contact angle between race and ball, n is a number of 
rollers. 

 
Figure 1 – Inspection system 

So characteristic defect frequencies specified by shown equations make it 
possible to detect the presence of a defect and diagnose in what part of bearing the 
defect appears, but there may be concluded that there are localized defects on the 
outer race of bearing if there can be seen a frequency occurring at race close to 
theoretical estimation of the characteristic defect frequency for corresponding defects 
on the outer race. 

FEATURE EXTRACTION USING SPECTRAL ANALYSIS 

Feature extraction procedure is one of important parts of signal processing for 
condition monitoring. An efficient representation (description) of a bearing condition 
using a suitable basis should be used in order to reduce the dimensionality of the 
feature vectors characterizing the bearing state and make a state description 
containing all considerable information which can be further processed in the 
classifier.  
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Different spectra estimation methods were employed and discussed for feature 
extraction in this paper: Power Spectral Density (PSD) estimation by periodogram 
[2], PSD estimation by Welch's method, PSD estimation by AR model, and MUSIC 
spectrum estimation. The Welch’s method splits a set of data into smaller sets of data 
and calculates the modified periodogram (the power spectrum) of each set [2]. AR 
model and MUSIC estimator will be described consequently. 

As wear progresses (see eq. (1) to (3)), the fault becomes repetitive and 
ultimately related to running speed e.g. also as higher harmonics. Defect frequencies 
may also appear as a modulation on a high frequency signal. Because of bearing 
vibration being related to revolution speed of the shaft, there could be useful to assess 
the level and frequency of revolution speed vibration as the reference level. In 
practice, many bearing components contain natural frequencies almost in the range up 
to 2000 Hz, and thus the analysis could be focused on this bandwidth to reduce 
influence of high-frequency signal respective noise on used spectral density 
estimation method, e.g. AR model or MUSIC spectrum estimator. 

There could be evaluated entire shape of spectrum (or PSD) or only bandwidths 
round corresponding characteristic defect frequencies can be evaluated. The spectrum 
shape evaluation may afford higher sensitivity because of higher harmonic of bearing 
vibration signal, but there has to be considered that the energy and distribution of 
vibration, consequently spectrum shape, may change after reassembling the tested 
machine. 

AR Model 

Conventional methods, based on Discrete Fourier Transform (DFT), are pretty 
capable to represent correct shape of spectrum or PSD truly, but DFT based methods 
don’t provide stable PSD estimation for a non-stationary signal. Furthermore, they 
don’t often allow achieving necessary resolution at frequency. That is why there were 
developed other methods for power spectra estimation. Described AR estimation of 
PSD is one kind of these methods. 

Power spectral density modeling by AR (Auto-Regressive) model is based on 
approximation that power spectral density of analyzed signal by square of the 
frequency response magnitude of the matching filter [2]. This procedure so called 
spectral matching is described in eq. (4). 
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where Sx(f) is the estimated power spectral density, T is a sample period, Pe is a 
constant which matches power of signal spectra to the model, and A(f) is a frequency 
response of matching filter. 

AR model estimates the PSD of an input signal vector using the Yule-Walker 
method. This method fits autoregressive linear filter model to the signal by 
minimizing the forward prediction error (based on all observations of the input 
sequence) in the least squares sense. The obtained spectral estimation is the squared 
magnitude of the frequency response of this AR model. Because the method 
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characterizes the input data using an all-pole model, the correct choice of the model is 
important. The choice should correspond to your signal (similar to an assumed 
number of peaks). 

MUSIC Estimator 

The MUSIC (MUltiple SIgnal Classification) algorithm estimates the spectrum from 
a signal or a correlation matrix using Schmidt's eigenspace analysis method [3]. The 
method split the input signal space into signal subspace and noise subspace. The 
algorithm performs eigenspace analysis of the signal's correlation matrix in order to 
estimate the signal's frequency content. This algorithm is particularly suitable for 
signals that are the sum of sinusoids with additive white Gaussian noise. The MUSIC 
spectrum estimation Px(f) is given by eq. 5. 
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where N is the dimension of the eigenvectors and vk is the k-th eigenvector of the 
correlation matrix. The integer p is the dimension of the signal subspace, so the 
eigenvectors vk used in the sum correspond to the smallest eigenvalues and also span 
the noise subspace. The vector e(f) consists of complex exponentials, so the inner 
product amounts to a Fourier transform. This is used for computation of the spectrum 
estimate. The FFT is computed for each vk and then the squared magnitudes are 
summed. In practice, the autocorrelation matrix is not known and must be often 
estimated from the measured data samples. 

CLASSIFICATION BY NEURAL NETWORKS 

Bearing condition state was evaluated and classified using neural networks classifiers. 
There was used supervised teaching for this purpose. The features of a bearing 
condition were classified by two neural classifiers: Multilayer perceptron and Radial 
basis neural network. 

Multilayer perceptron 

The neural network consists of a number of neurons interconnected via weights, 
which are iteratively tuned for a desired behavior of the network [4]. This class of 
networks consists of multiple layers of perceptron neurons, usually interconnected in 
a feed-forward way. The multiplayer perceptron (MLP) networks belong to the 
standard neural networks tools. Almost always, however, they are used for supervised 
learning, to the extent that often MLP networks are thought to be suitable only for 
supervised learning. MLP networks partition feature space with a combination of 
hyper-planes.  
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Radial basis neural network 

The Radial basis neural networks (RBFNN) [4] are powerful techniques for 
classification in multidimensional space. RBFNN is a feedforward neural network 
with at least one layer of neurons using RBF functions. A RBF is a Gaussian-like 
transfer function, which has built into a distance criterion with respect to a center. 
Radial basis functions have been applied in the area of neural networks where they 
may be used as a replacement for the sigmoidal hidden layer transfer function in 
multilayer perceptrons. RBFNN decision boundaries are hyper-ellipsoids. Radial 
basis networks tend to have more neurons than standard feedforward networks. 

EXPERIMENTS 

Data acquisition 

This was verified using measurements published in Data Bearing Center [5]. This 
website provides access to ball bearing test data for normal and faulty bearings. The 
test stand consists of a 1.5 kW motor, a torque transducer/encoder, a dynamometer. 
Single point faults were introduced to the test bearings using electro-discharge 
machining with fault diameters of 0.35 mm, 0.53 mm, 0.71 mm, and 1.02 mm. SKF 
bearings were used for this experiments. Vibration data was collected using 
accelerometers, which were attached to the housing with magnetic bases. During 
some experiments, an accelerometer was attached to the motor supporting base plate 
as well. Vibration signals were collected using a 16 channel DAT recorder. Speed and 
load value were collected using the torque transducer/encoder. Faulted bearings were 
reinstalled into the test motor and vibration data was recorded for motor loads of 0 to 
2 kW (motor speeds of 1797 to 1720 RPM). 

 

Figure 2 – Power Spectral Density estimate via Periodogram 
(a - bearing without any fault ,b – bearing with fault of diameter at 0.53 mm at the inner ring) 

The acceleration data used in this paper was measured at locations near to the 
motor bearings and was collected at 12,000 samples per second. Only faults 
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introduced separately at the inner raceway and outer raceway were evaluated in this 
research. 

Feature extraction using spectrum estimation 

Bandwidths at 50 Hz round corresponding characteristic defect frequencies for inner 
race and for outer race were evaluated for feature extraction in this work. A condition 
feature was formed by a mean value of spectrum within this bandwidth. Signal was 
filtered by low-pass Butterworth filter with stop-band frequency at 700 Hz to ensure 
right condition estimating.  

 

Figure 3 – Power Spectral Density estimate via Welch 
 (a - bearing without any fault ,b – bearing with fault of diameter at 0.53 mm at the inner ring) 

Different spectral estimation for one kind of bearing fault are shown in figures 2 
to 5. The revolution speed was 29.5 Hz, and estimated inner ring characteristic defect 
frequency was 146 Hz. The order of used AR model was 56. The order of MUSIC 
was 30. The length of a DFT window was 512 for both. 

 

Figure 4 – Power Spectral Density estimate via AR model 
(a - bearing without any fault ,b – bearing with fault of diameter at 0.53 mm at the inner ring) 
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Figure 5 – Pseudospectrum estimate via MUSIC 
(a - bearing without any fault ,b – bearing with fault of diameter at 0.53 mm at the inner ring) 

Classification 

A set containing 152 records was classified. A set contains 9 classes: four kinds of 
faults for inner and outer race, and records of bearing without faults. There were used 
30 % randomly selected records of the set for training the classifiers.  The record was 
measured with different load and revolution speed of the shaft. 

A network with one hidden layer containing 7 neurons was used. The network 
was trained using the backpropagation learning rule with the Levenberg-Marquardt 
algorithm. This algorithm appears to be the one of the fastest methods for training this 
kind of networks. For multiclass classification, there was used one binary coded 
output per class. For a given output, the associated class corresponds to the index of 
the maximum value in the output vector. 

We use a network with one hidden radial basis layer. The number of neurons in 
the hidden layer was 10. K-means algorithm was used for training the RBF network. 

Because of there was different number of vectors in classes, whereas the 
smallest class contained only 8 records, efficiency of classification was evaluated by 
summarizing wrong classifications through the simulation part of the set. Comparison 
of efficiency of classification by multi-layer perceptron neural network for different 
ways of spectrum estimation is shown in table 1.  

 
Table 1 – Efficiency of classification via different spectra estimations 

Estimation Wrong classifications [%] 
Periodogram 3.7 

Welch 2.8 
AR model 2.8 
MUSIC 1.9 
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CONCLUSION 

A bearing condition monitoring technique based on spectral analysis of monitored 
bearing vibration was investigated. This paper has outlined in greater detail the 
different analysis techniques based on estimating the spectrum of the bearing 
vibration. Vibration of the tested bearings was evaluated by two neural classifiers. 
Classification was able to recognize different bearing conditions, but there was not 
enough bearing vibration data to perform statistic evaluation of classification results. 
AR model and especially MUSIC spectrum estimation performed very well in this 
application. These vibration spectrum estimation methods seem to be good alternative 
to wavelet analysis. 
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