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Abstract 
 Many methods for tracking time varying tones have been proposed. Those noise and 
vibration processes often include both random and tonal components. Coherence 
analysis cannot be readily applied to the tonal components, since the coherence 
between two tones having the same frequency is unity. Thus, for example, two 
independent engines operating at the same speed will exhibit unity coherence at 
harmonics of the operating speed. For this reason, noise source identification using 
coherence analysis has typically ignored the near-unity coherence associated with 
narrow spectral lines. However, those spectral lines not only often times dominate the 
spectrum, and so it is reasonable to question whether there is, indeed, information in 
them that would allow one to use them to quantify the level of correlation between 
tonal noise sources. The answer to this question is the focus of this paper. It is 
affirmative, and based on the fact that two independent machines will never operate at 
exactly the same speed. Furthermore, the machine speed always entails minor speed 
fluctuations. By tracking the amplitude and frequency fluctuations associated with a 
given tonal component using an extended Kalman filter (EKF) one can extract 
amplitude and frequency time series that can quantify the level of correlation between 
two tones having the same nominal frequency. We present the structure of our EKF, 
investigate its sensitivity to critical EKF parameters, and offer novel measures for 
quantifying the correlation between two tones. These measures range from statistical 
correlations between amplitude/frequency methods have been evaluated in high SNR 
settings (>10dB). The EKF method presented in this work is shown to work well at 
much lower SNRs (e.g. -3 dB). This is important, since many machinery applications 
entail a notable amount of random noise/vibration. 
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INTRODUCTION 

In this work we address the influence of frequency jitter on the stochastic properties 
of sinusoids. Sinusoids are commonplace in applications associated with sound and 
vibration analysis of mechanical systems [1], [3]. Examples include their use in 
detection of defects in gears and bearings, and in fan noise, to name a few. The focus 
of this work is limited to the influence of frequency jitter on the power spectral 
density (PSD) for a single process, and on the coherence between two processes. 
Consider the following random process: 
                             ])(cos[)( oo tttx ϕλϕω ++=  (1) 
where the nominal frequency, oω , is known, where the initial phase, oϕ , is a random 
variable that satisfies the following expected value condition 
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We are interested in not only spectral structure of (1), but also that of λ c(t). The goal 
here is to determine to what extent the structure of λ c(t), which we term ‘jitter’, can 
be used to quantify the level of correlation between two processes, each having the 
form (1) with the same nominal frequency oω . The rationale for this goal is simple. If 
in (1) we have 0=λ , then there is no frequency jitter. Additionally, if the initial 
phase, oϕ is unknown (as is the case when one collects repeated measurements of (1) 
randomly, as opposed to synchronous with a periodic trigger such as a top dead center 
pulse), the autocorrelation function (4) is simply a cosine function, and the PSD will 
include Dirac delta functions at oω± . Furthermore, in the case of two such processes 
whose initial phases are mutually independent and each satisfies (2), then the 
coherence will equal zero at these frequencies. But often, for this independence to be 
satisfied, the record length must be sufficiently long so that the cumulative effect of a 
small amount of jitter is sufficiently large. This has been a long standing fundamental 
limitation of coherence analysis in relation to rotating mechanical systems. Very often 
it will happen that at harmonics of the machine frequency, there are large values of 
coherence between any two measurement processes associated with the machine. 
Consequently, this information is dismissed; the logic being that since all processes 
are associated with the same periodicity, then it is natural that this uninformative 
coherence behavior should occur. The goal of this work is to investigate to what 
extent one can use jitter information to quantify a meaningful coherence level. For 
example, if a gear pair entails one type of jitter, while the machine noise entails 
another, then one might conclude that the noise is not caused by the gear vibration; 
even though the nominal coherence is close to one.  
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TOOLS FROM FM THEORY 
 

From (3), the instantaneous frequency is λc(t). If it can be assumed that λc(t) is a 
strictly stationary random process, then (1) is a wide sense stationary (wss) zero mean 
random process, and its autocorrelation function is [2]: 
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We now define the following complex-valued random processes, and give their 
corresponding autocorrelation functions: 
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Comparing (4) to (5) and (6), we see that the PSD of is proportional to the real 
part of the convolution of the PSDs of the analytic processes defined in (5) and (6). 
Since the PSD for (5) includes only Dirac delta functions at

)(tx

oω± , the effect of 
frequency jitter is to center the PSD for (6) at these locations. We now address the 

PSD for (6), for Markov jitter. Suppose that the frequency jitter is a 
Gaussian Markov process; that is, 

)()( tqtc
Δ

=λ

                                        . (7) ||22);( τβσλλτ −= eR cqq

This jitter process has a ± bandwidth (BW) of β2 . In view of the term ‘jitter’, we will 
require that oωβ <<2 . It follows that 
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Since is a zero mean Gaussian random variable, then so is the phase)(tq )(tϕ . 
Consequently, the autocorrelation function in (6), which is also the characteristic 
function for )(tϕ (with respect to the variable λ), is 
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In FM theory the variable λ is termed the modulation index. We used it here only to 
arrive at (9) via characteristic functions. We will henceforth set λ to one. Then the 
strength of the frequency jitter (i.e. the range of frequencies traversed) is controlled 

by , and the jitter speed is controlled by β. Define the variable and note 
that this variable is dimensionless, as is

2
cσ βσγ /c

Δ

=
τβ . Then we can express (9) as 
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The behaviour of (10) is illustrated below. 
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Figure 1. Plots of (10) for 100.1,1.0 and=γ . 
 
From Figure 1, we see that as γ increases, the autocorrelation function (10) 
approaches that of white noise, in relation to the normalized time, τβ .  Hence, the 
behaviour of the corresponding PSDs will become increasingly broad.  
 
 
         THE INFLUENCE OF JITTER ON PSDs AND COHERENCE 
 
We now demonstrate the influence of these variables on the spectral and coherence 
properties of time-varying sinusoids modelled by (1). 
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Figure 2. The PSD estimate and σ3±  bounds for (1) with .999.0;1 == βγ  
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Figure 2 above shows the PSD estimate of (1), as well as uncertainty bounds. Clearly, 
there is very little uncertainty in the region of oω . Figure 3 below shows the 
coherence estimate for two sinusoids, each modelled by (1) and having the PSD 
shown in Figure 2. As expected, the coherence sample mean is less than one. But 
more importantly, the uncertainty is much more evident than that of the PSD. For an 
increase in jitter strength, we noted that the PSD estimate becomes broader, but that 
the uncertainty is still very low. In contrast, Figure 4 shows that not only is the mean 
coherence low, as expected, but that the uncertainty is high. 
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Figure 3. Coherence estimate for two independent sinusoids with the PSD shown in Figure 1. 
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Figure 4. Mean and σ3  bound for two t.v. sinusoids, each having an AR(1) trend about 
F=0.25 Hz. The AR(1) process has standard deviation and drift parameter 410 − 999.0=α . 
 
The influence of frequency jitter strength and speed is illustrated in Figure 5. It is far 
more dependent on strength than speed. For a strength of even 1% it is almost zero, 
even for 19999.0 ≅=α . 
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Figure 5. Estimated (squared) coherence, (mean of n=50 simulations for each point) as a 

function of jitter strength, 
yxC

ωσ , and normalized drift parameter (speed), . 9.0/104α
 
The strong influence of jitter on the level of uncertainty in coherence estimates 
provides insight into just what has been so often observed in experimental settings. It 
also adds weight to a decision to ignore coherence at tone frequencies.  
 
 TRACKING A SINUSOID HAVING FREQUENCY JITTER 
 
The above results provide some insight into the influence of jitter strength and speed 
on PSD and coherence estimates. In practice, however, the jitter process (1) must be 
estimated. Given the aforementioned uncertainty, one might expect that reliable 
estimation might be nontrivial. In this section we present one method for tracking 
frequency jitter. Consider a signal that is a pure sinusoid; that is: 
 
                                       )sin( ϑ+Ω= tAst  (11) 
 
It is well known that (11) may be expressed as: 
 
                                       11 )cos(2 −+ −Ω= ttt sss  (12) 
 
From (12) and the assumption that the frequency uncertainty can be modeled as an 
AR(1) process, we have 
 
                     11; ++ Ω+Ω=ΩΩ+Ω=Ω ttttt eδβδδ  (13) 
We are now in a position to develop a state space representation for a measurement 
process given by: 
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Define the state process . If we assume that the sinusoid 
frequency is slowly time-varying, to the extent that 

tr
tttt ssx ],,[ 1 Ω= − δ

1−Ω≅Ω tt  then (12) may be 
expressed as: 
 

ttttttt xxxxgsss ,,2,1,3111 )cos(2)()cos(2 −•+Ω=≅−Ω= −+  (15) 
 
Clearly, (15) is a nonlinear function of the state , which is unknown. But the 
extended Kalman filter can be used to obtain an estimate of it. 

tx

 
Example. Figure 5 below shows a sample of a time-varying sinusoid plus white 
noise. The overall SNR is -3 dB. Figure 6 shows that even in a relatively low SNR 
setting, it is possible to achieve frequency jitter estimation with relatively low (< 
10%) uncertainty. 
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Figure 5. Overlaid plots of a time-varying sinusoid with (blue) and without (pink) 
white noise contamination. 
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Figure 6. Percent error in the estimate of the time-varying frequency.  
 
 

COHERENCE BETWEEN TWO NOISE-CORRUPTED T.V. SINES 
 
We conclude this work by briefly discussing the utility of jitter tracking information 
for the case of a time-varying sinusoid that is corrupted by additive noise. Suppose 
that both channels include the same sinusoid, but that the noise processes are 
independent. It is well known that the coherence at the sine frequency will drop as the 
SNR drops. However, if the frequency jitter could be perfectly recovered, then the 
jitter coherence would equal one. We applied the above EKF method to estimate the 
jitter for each channel, and subsequently obtained a coherence estimate of 0.92 in an 
SNR environment (0 dB) wherein the estimated coherence between the channels was 
less than 0.2. Even though this low value is to be expected, the jitter information 
allowed us to determine that, essentially, the same sine was on both channels.  
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