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Abstract 
A theoretical study of plane waves in hypoplastic medium is presented using a ray method of geomet-
rical seismology. Dynamical equations for relative small disturbance about an initial state are derived 
from general equations of hypoplasticity. We consider the hypoplastic equations with intergranular 
strain and assume that the initial state and the density of medium are inhomogeneous. In this case using 
of the ray method is the most efficient. The solutions for the components of rate vector or stress are 
found in the form of ray series. The coefficients of these series satisfy on order differential equations of 
the transfer which are solved analytical in case when void ratio is less then unit.  
The velocities of quasi-longitudinal and quasi-transverse waves in a hypoplastic medium with inter-
granular strain depend on a kind of the loading and the unloading and they are usually less than the 
velocities of longitudinal and transverse waves in elastic skeleton. 

 
 

INTRODUCTION 
 

Wave propagation equations in a hipoplastic medium allows to describes some effects 
which are observed in during earthquakes [1]. Constitutive equations with granular 
strain are strong nonlinear thus an application of small parameter method appear natu-
ral. In paper [2] authors applied the method of small parameter for solving of prob-
lems of dynamical hipoplastisity. 

As the capacity of small parameter in [3] is taken the expression 
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thors obtained the solutions of supplied problems at first approximation. 



 

  

Theory of wave propagation in hipoplastic medium describes some stages in 
this process [4,5]. 

We consider a finding of next approximation. 
If disturbance amplitudes of stresses are weak relative to initial stress state, so 

waves propagate as elastic waves in porous body with water. For homogeneous initial 
stress and constant density these wave propagate with constant effective velocities [6]. 

However already in this approximation we can consider plastic waves in case 
when grains of skeleton are under relative displacements with friction. Plastic wave 
propagate with rates, which are found in [6]. The model of a hipoplastic medium with 
intergranular strain gives a possibility to calculate the speeds of plastic waves [6]. 

Mathematical methods, which authors applied in [6], don’t allow to consider 
the wave propagation in a hipoplastic medium for inhomogeneous initial stress state 
and variable density. 

In that article we consider the ray method which is the greatest in geometrical 
seismology [5]. 
 
 
1.1 Mathematical formulation of wave propagation in hipoplastic medium. 
 
Closed system of equations which describes a process of wave propagation in hi-
poplastic medium has the form in general case 
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The system (1.1) – (1.5) contains 17 equations for 17 field values: V  is a veloc-

ity, Т is a stress tensor, δ  is a intergranular strain tensor, ρ  is a density of medium, е 
is void ratio. For the system (1.1) – (1.5) are written initial and boundary condition 
for each concrete problem. 

The system (1.1) – (1.5) is strong nonlinear therefore we consider some as-
sumption which allow to simplify one. Assume analogous [6] that stress disturbances 

)0(TT −  are less than initial stresses )0(T  
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However, in contrast to [3], we don’t assume that the initial stresses )0(T  are 
constant. 



 

  

Consider the case when )()0( xTT = , )(xρ=ρ  are functions of spatial coordi-

nate x . Also we assume analogous [6] that initial stress state is hydrostatic state, then 

tensors 1ˆ −⋅= TTT , JTTT
3
1ˆ 1 −⋅= −∗  have the following form 
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From (1.7) it follows that ∗T̂  is the small parameter in nonlinear system (1.1) – 
(1.5). Applied the method of small parameter (the method of consequent approxima-
tion) we can find consequently the systems of equations for the approaches of field 
values. 

At first consider equations (1.3), (1.4). Write these equations for condition (1.7) 
in the form [6]: 
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The parameter cϕ  corresponds to the critical friction angle [6]. 
 

1.2 The formulation of the problem. 
 
Consider the problem of wave propagation in the layer of the hipoplastic medium 

Lxxx +≤≤ 10110  (Fig. 1). The thickness of the layer is L . 
Practically the material is laminated, macroscopic effects of this lamination can 

be described by effectively model of medium. Let's consider cohesion of the layer 
with half-space rigid. 



 

  

At the moment 0tt =  on the plane 101 xx =  we set the initial conditions. 
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The boundary conditions have the form: 
 

0),(),( 103101 == txVtxV ,   )(),( 0
2102 tVtxV = , (1.14) 

.)(),(,0),(),(),(),(),( 0
12101210231013103310221011 tTtxTtxTtxTtxTtxTtxT ======  (1.15) 

x10

x3

x1

x10+L

x2

 
Figure 1 

In that case all field values are 
the functions only of 1x  and the 
equations (1.1), (1.2), (1.8) – (1.11), 
(1.5) can be written in the form: 
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The expressions for 22T& , 33T&  we don't write, because in further calculations we 
won't use them. 

At first let's consider equations (1.21). These equations are nonlinear therefore 
analytical solution may be found only approximately. We use 1-D approximation for 
each equation from system (1.21) in linear approximation. 
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We obtain following equation: 
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From (1.38) it follows: 
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Substituting (1.27) in (1.26) find 
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In case when 1<<e  we obtain equation for zeroth approximation: 
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We obtain the differential equation for 1V  
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For the function ),( txp  we write the equation analogous [6]: 



 

  

( )( )
( ) 1

1
1

1
1

1
x
p

V
x
V

Se
epp

t
p e

r

aee
∂
∂

−
∂
∂

−
++

−=
∂
∂  (1.31) 

At zeroth approximation of (1.30) obtain: 
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2. FINDING AND SOLVING OF TRANSFER EQUATIONS  
IN GENERAL CASE 

 
Consider the equation (1.29). Coefficients 2A , p  are functions of t , 1x , we apply the 
ray method for the solving this equation. Write the solution of the equation in the 
form of ray series: 
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where )( 1xψ  is the eikonal; )(
2

nV  are the functions to be found; t  is the current 
time; 1x  is the spatial coordinate. 

Substituting (2.1) in (1.29) obtain: 
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From (2.2) it follows 
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where )(xC  is the velocity of the wave. 



 

  

The equation (2.4) is called eikonal equation. This equation is applied in geo-
metrical acoustic (seismology). 

The solution of the equation (2.4) has the form: 
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The function )( 1xψ  is the phase of wave or time of wave arrival in the point 

1x . In the formula (2.5) we take sign " + " for waves in the direction 1x , sign " – " for 
waves in the direction 1x− . 

 
 

3. COMPARISON OF RESULTS OF WAVE PROPAGATION IN 
HIPOPLASTIC MEDIUMWITH AND WITHOUT REGISTRATION  

OF INTERGRANULAR STRAIN 
 
The velocities of quasi-longitudinal and quasi-transverse waves have the forms: 
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From (3.2), (3.3) it follows that values of the velocities depend on the sign of 

11D , 12D , 11
~E , 2α , 3α . 

In paper [6] are given numerical meaning for the coefficients: 
4101 −⋅=R  ;   0,5=Rm  ;   0,2=Tm  ;   5,0=βr  ;     0,6=χ  ;  

then in formulas (3.1), (3.2), (3.3) we obtain 01 >α , 02 <α , 06 >α . 
Therefore by loading quasi-longitudinal wave propagates with the velocity 

which is less then velocity for elastic skeleton, by unloading it may be different situa-
tion for concrete date. The velocity quasi-transverse wave is less than the velocities of 
transverse wave in elastic skeleton. 



 

  

4. CONCLUSIONS 
 

1. The equations for wave propagation in a hipoplastic medium are obtained with a 
registration of intergranular strain. 
2. These equations describe the evolution of plane disturbances in case when initial 
state and the density of medium are inhomogeneous. Therefore the dynamic equations 
are coupled with each other. 
3. In case when void ratio 1<<e  the dynamic equations are obtained for the quasi-
longitudinal and quasi-transverse waves, moreover for transverse component the dy-
namic equation is closed and for longitudinal component the dynamic equation con-
tains the transverse component. 
4. The solutions of the dynamic equations are obtained in general analytical form 
with the help of the ray method. Ray method allows finding the solutions of the dy-
namic equations in hipoplastic medium with intergranular strain. These solutions cal-
culate along ray trajectories in a vicinity of wave surface. 
5. The velocity of quasi-longitudinal wave in hipoplastic medium with intergranular 
strain is less than in elastic skeleton by loading and it may be less or bigger by 
unloading (it depends on conditions of concrete problem). The velocity of quasi-
transverse wave in hipoplastic medium with intergranular strain is less than in elastic 
skeleton. 
6. The obtained results in case of homogeneous initial state and constant density of 
hipoplastic medium are analogous to the results that are obtained by other method. 
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