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Abstract 
In presence of nonlinearity, more accurate responses are not always obtainable with smaller 
time steps. From a mathematical point of view; similar to time steps, nonlinearity tolerances 
are algorithmic parameters. Hence, it is worth investigating the possibility of increasing the 
accuracy by time integration with smaller tolerances. This is the subject of the study here. As 
the result, smaller tolerances can not guarantee more accuracy for time integration analyses. 

INTRODUCTION 

In order to analyze the behaviour of structural systems in the general case of systems 
and behaviours, it is broadly accepted to follow the procedure below; 
1- Defining the structural model, i.e., determining the parameters affecting the 

structural behaviour (according to the purpose of the analysis). 
2- Stating the dynamic equilibrium (equation of motion) of the structural model, the 

corresponding initial conditions, and probably the existing constraints, by setting 
the mathematical model corresponding to the model obtained in stage 1. 

3- Discretizing the mathematical model obtained in the stage 2 above by methods 
such as FEM (Finite Elements Method), BEM (Boundary Elements Method), etc., 
and arriving at a mathematical model discretized in space and continuous in time.  

4- Analyzing the semi-discretized model obtained in stage 3 by one of the well-
known time integration methods, e.g., the average acceleration method of 
Newmark [12]. 
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In view of the last two stages, the problem to be analyzed is stated below [3,8,17],  
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In Eq. (1), M represents the mass matrix; intf  and f (t) respectively express the 
vectors of internal forces and external excitations; ( )tu , ( )tu& , and ( )tu&&  denote the 
vectors of displacement, velocity, and acceleration, respectively; 0u , 0u& , and 

0intf  
imply the initial status, and Q  stands for the probable restricting constraints, e.g., in 
problems involved in impact or elastic-plastic behaviour [10,24]; all with respect to 
the degrees of freedom set for the system under consideration. Time integration of 
Eq. (1) can not be carried out exactly; the reason is also the complexities of the exact 
formulation essential in time integration of MDOF (Multi-Degree-of-Freedom) 
systems involved in nonlinearities [5,7]. Consequently; since the pioneering methods 
of J.L.Houbolt [9] and N.Newmark [12] (see [23]), many methods are proposed based 
on different approximations [2,6,9,11,23]. In Presence of nonlinearity, besides the 
inexact formulation of the integration methods, errors due to inexact nonlinearity 
solutions affect the accuracy [20]. The errors due to the approximate formulation can 
be changed by similarly decreasing/increasing the sizes of all time steps along the 
time interval T in Eqs. (1) (according to a parameter namely t∆ ). Nevertheless, the 
accepted way to control the errors of nonlinearity solutions is making use of 
nonlinearity tolerances, i.e. δ , in iterative procedures; in nonlinearity-detected time 
steps, iterative nonlinearity solution methods are being implemented [4], ending with  
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In Eq. (2), iδ  implies the error of the nonlinearity solution. e.g., the out of balance 
force; δ  is the corresponding nonlinearity tolerance; and  stands for an arbitrary 
norm [13]. Equation (2) leads to   
1- δ   controls the accuracy of the nonlinearity solution; and hence, similar to t∆ , δ  

is an algorithmic parameter controlling the accuracy of the integration analysis,  
2- Even with smaller δ , arriving at smaller kδ  can not be guaranteed. Therefore, 

different from t∆ , which can reliably control the errors originated in the  
approximate formulation, δ  is not a reliable controller for iδ .  

In view of the two points above, the trend of error changes with respect to 
nonlinearity tolerances might even be worse than the error changes with respect to 
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time step size. This signifies the importance of the study in this paper. Brief 
theoretical and numerical studies are carried out in the next two sections.  

THEORY 

In view of the well established linear SDOF error formulation in the literature [2]; 
denoting the displacement and velocity with v  and v&  respectively, and implementing 
the definition below, 
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as the vector of deviation of the approximate responses { } T

ii vv &   (T as the right 

superscript implies matrix transposition) from analytical responses ( ) ( ){ } T
ii tvtv & , at 

it ; ie  can be expressed as  
 
 iiii τ+= −1eAe . (4)
 
In Eq. (4), the iA  and iτ  respectively stand for the amplification matrix [2] and the 
vector of local errors [22] at the time step ending to it . Starting from Eq. (3), and 
assuming precise initial conditions, the step-wise modal error formulation considering 
nonlinear behaviour is recently proposed [20,21] as,  
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(5)

(and later resulted in a formulation for the errors of arbitrary component of the 
response of nonlinear semi-discretized equations of motion [19]). In Eq. (5); the new 
variable ψ  represents the matrix converting the modal descriptions at two adjacent 
time steps [20,21], the right and left subscripts respectively stand for the time step and 
the time station, the right superscript is an identifier for the vector member, and 
finally ∆NL  implies the effects of the kδ  in Eq. (2) on the errors under consideration. 
Nonlinearity tolerances (δ ) affect Eq. (5) only implicitly via Eq. (2). In addition, 
Eq. (2) is an inequality and, as discussed in the previous section, can not reliably 
control nonlinearity solutions. Hence, it seems reasonable to conclude that smaller 
tolerances can not guarantee less error. Therefore, the response to the question in the 
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title of this paper is negative, i.e., with only decreasing δ , achieving more accuracy 
from time integration analyses is nothing  more than probable. However, due to 
reasons such as the secondary role of the nonlinearity tolerances in time integration 
analysis (compared to the integration step size), the numerical value of the 
phenomenon explained above might be trivial. Also, in order to clarify this 
ambiguity; in the next section, besides studying whether we have correctly gave a 
negative response to the main question of this paper, error changes with respect to the 
time step size will be compared with those with respect to the nonlinearity tolerances. 

NUMERICAL ILLUSTRATION 

To study the changes of errors with respect to the nonlinearity tolerance and compare 
these changes with those with respect to the time step size; it is reasonable to first 
study the special examples for which the changes of errors with respect to the time 
step size is reported in the literature. In view of this consideration, an appropriate 
example is as noted below [15,18,21], 
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Analyzing Eq. (6) with the average acceleration method of Newmark [12] (average 
acceleration is the method recommended in the literature for problems involved in 
nonlinearity [1]) with time step sizes, 02.0=∆ t  seconds, nonlinearity tolerances 

01.0=δ , and other parameters similar to the parameters in the literature [15,20], the 
analysis is then repeated with only changing the nonlinearity tolerances to the new 
tolerances noted below 
 
 1684 10,10,10 −−−=δ . (7)
 
Reporting the errors [14] of the obtained responses in Fig. 1 justifies the negative 
response to the question in the title of this paper. Meanwhile, comparing Fig. 1 with 
Fig. 2 [21] clearly demonstrates the fact that, as explained theoretically in the 
previous section, similar to the decrease of time steps, implementing smaller 
nonlinearity tolerances, can not guarantee enhanced accuracy. This is in complete 
agreement with the other researches reported in the literature [16,21]. It is also 
instructive to note that, in view of Figs. 1 and 2, the changes of errors with respect to 
the nonlinearity tolerances can be more reliable than those changes with respect to the 
time step sizes.  
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a) Average Acceleration [12] 

 
 

 
 
 
 
 
 

a) Average Acceleration [12] 
 
 

 
 
 
 
 
 
 
 
b) Central Difference [23] 

 
 
 
 
 
 
 
 
 
 
b) Central Difference [23] 

 
 

 
 
 
 
 
 
 
 
c) HHT [23] 

 

 
 
 
 
 
 
 
 
 
c) HHT [23] 

Figure 1 – Changes of errors  with respect to 
nonlinearity tolerance, for Eq. (6), 
when 02.0=∆ t    

 

Figure 2 – Changes of errors with respect to 
time step size, for Eq. (6),  
when 01.0=δ    

 

CONCLUSION 

Time integration of nonlinear semi-discretized equations of motion with smaller 
nonlinearity tolerances can not guarantee more accuracy. The trends of errors changes 
with respect to the nonlinearity tolerances might be more predictable compared to 
those with respect to time step sizes. Further research is being recommended. 
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