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Abstract

A random structure plays an important role in wave propagations. The Anderson localiza-
tion is well known in electron transport theories. Such a localization causes divergence of
resistivity. In acoustic propagations, localization of sound may be brought or the information

of source position may be lost by the localization. These properties of acoustic wave in the
random field are investigated through a Boundary Element Method (BEM). The localization

of acoustic wave was observed in 2-dimensional random medium by a numerical calculation.
A discussion on localization length and mean free path is made by a weak localization theory
in quantum transport phenomena.

INTRODUCTION

Properties of wave propagations through random media have been studied extensively. The
disorder plays an important role in transport phenomena. The Anderson localization is well
known in electron transport theory [1]. Electrons are trapped in a random potential field and
the resistivity diverges to infinity. Its critical exponents are predicted by scaling theory [6].

It has been shown experimentally that electro-magnetic wave is trapped in fractal geometry,
recently [4], [5]. Also in one dimensional random system, the attenuation of acoustic wave
was investigated by Nakasako et al. [3]. The wavelength, randomness and mean free path play
important roles in scaling theory.
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Here the sound propagations through media with scatterers are investigated by numer-
ical methods. Essential features of wave transport phenomena through random media can be
obtained by two-dimensional calculation. In fact, trees in a forest are considered as disordered
obstacles to 2-dimensional sound propagation. A model of trees in forest based on an actual
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Figure 1: Trees in forest as obstacles for sound propagation

measurement is illustrated in Figure 1. Dense trees scatter sounds.

A Boundary Element Method (BEM) was mainly applied to this problem. Distributions
of sound pressure level, acoustic energy and intensity vector have been examined by BEM.
The localizations of the acoustic quantities were confirmed numerically. Diverse changes in
arrival directions of sound were observed by acoustic intensity mapping. The scaling theory
developed in the quantum transport phenomena was applied to acoustic problems and the
localization length in random medium was discussed.

BEM CALCULATION

A Boundary Element Method (BEM) is useful for scattering problems. Because a simulation
in an unbounded space is easily carried out when a velocity potentia scattering wave
satisfies the Sommerfeld radiation condition.

lim r'5 ( ¢s+ ikos) =0, (1)

r—00 on
whered is a dimensionality. Under this condition, the integration on the infinite domain
boundary in BEM vanishes. In order to satisfy the condition above, the fundamental solution
u* (x,y) represented by the Hankel function of the second Kiitdl is used in 2-dimensional
BEM.

(2, 9) = 1 (kr), @
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wherer is the distance betweenandy.

However, in BEM, a set of linear equations with a dense complex matrix must be solved
numerically. The number of matrix elements for 3-dimensional space becomes enormous so
it is difficult to carry out practical computations. Nevertheless, BEM in 2-dimension is an
efficient method because a number of elements on boundary is not so many and the essential
feature of wave propagation can be examined in 2-dimensional calculations. Therefore, the
2-dimensional BEM is applied throughout this report.

The acoustic energy densityand intensity vectof/,, /,,) are computed by the veloc-
ity potential¢

1 kP 005, 100,
w—z[?|¢| +P(|% +|8_y ] 3
I = g Reliopd(~ 900, (n=12,y) @)

Thus, basic acoustic quantities are derived from the velocity potential.

NUMERICAL RESULTS

As mentioned in the previous section, the sound propagations in 2-dimensional media
with scatterers were examined by BEM. A basic periodic configuration was madex#313
obstacles and intervals of center of mass was set to be 1.5m for both directions. For simplicity,
the shape of obstacle was set to be square with 0.25m edges. The random configurations are
generated in order that the position of each obstacle is shifted by a uniform random number
betweent-0.5m. A point source of pure tone sound was set at (0, 200m). The obstacles were
considered as completely hard for sound propagation. The length of each element in our
simulation model is set to be less than 1/8 of wavelength and 1/5 of the edge of obstacle and
the constant element is adopted in which a singularity problem at a vertex point is avoided.
The calculations were done up to 800Hz

First, the sound pressure level is shown in Figures 2 and 3. The sound pressure distri-
butions for 250Hz and 500Hz are demonstrated in dB. The left figure and the right one are

for periodic and random configurations, respectively. As the sound fields were excited by pure
tones, these presentations show strong interference effects. Howerver, a tendencies of weak
sound localization can be seen in random configurations.

Figure 4 demonstrates acoustic energy densities for 250Hz. In this figure, levels were
also scaled in dB. As the sound pressure and particle velocity supplement with each other, the
interference patterns are hidden in the figure and the weak localization of sound wave can be
seen well in the disordered configuration .

The sound intensity vector is presented in Figure 5. Here, the length of intensity vector
is linearly scaled. In this disordered medium, orientations of intensity vectors rotate around

localized positions. From this fact, it is expected that the positional information of sound
source may be lost in deep forests where trees are considered as random obstacles. Thus the
emergency alarm may not propagate well in a forest filled with dense trees.
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Figure 2: Sound Pressure Distribution 250Hz
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Figure 3: Sound Pressure Distribution 500Hz

Contour profiles parallel tg-axis are plotted in Figure 6. The attenuation and localiza-

tion of sound in random scatterers are seen clearly through the acoustic energy representation.
We generated 31 configurations of random obstacles. BEM calculations have been car-
ried out for all media and ensemble average of contour profiles ajesrds has been per-
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Sound intensity vector : Random position, 250Hz
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Figure 4: Sound Energy Distribution 250Hz
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Figure 5: Sound Instensity Vector 250Hz
formed. The averaged profiles are plotted in Figure 7. The exponential damping through the
random medium is observed in both figures based on sound pressure and energy. The lo-
calization lengths for various frequencies were calculated by taking ensemble averages of
acoustic energy alongraxis. The attenuation length is estimated so that the wave amplitude
diminishesl /e in the distance. The localization length calculated through BEM for 250Hz is
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Figure 7: Ensemble Average of Sound Pressure and Energy

estimated to be 22.6m which is equivalent to the system size of our simulation models.

DISCUSSION

According to the electron transport theory, a localization leggthin 2-dimensional
space is predicted by
o 72l 5
&p = ﬁemP(T)v 5)
where) is the wavelength antis the transport mean free path [7]. This may not be our case
because the source was situated at the outside the scattering domain and incident wave was a
plane wave type. The localization length in 1-dimensional theory [2] is

2Ly,
&p = Nl=Int X l (6)
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whereN andl,, are a number of mode and width of channel respectively.

A mean free path is estimated by the following geometrical calculation. First, a position
is chosen in the random medium. (When it happens to be inside an obstacle the point is dis-
carded.) From the selected point, the ray is traced upto higher order reflections. The distance
d; between each reflection point and deflection afiglat each reflection are measured. The
mean free patli is estimated by

1 1 1
L= Y (1 —coshy)+ 7
L Ny (1= cos ')di 0

7

where N,,; is number of total path segments. This formula brings deflection angle weighted
value used in Boltzmann transport theories.

Since it is well known that according to the Bloch’s theorem there is no scattering
of electron wave by a periodic potential, the transport mean free path is different from that
derived by geometrical calculation. The total scattering satein the geometrical sense is
sum of those by periodic potential and the random configuration. When the geometrical mean
free path in the periodic structure ig roughly, the mean free path by random origins

estimated by
1 1 1
— =+ ®)

ltot lr p
The mean free path estimated by geometrical calculation in the medium with random obsta-
cles wasl;,; = 0.58m. The length for periodic configuration wigs= 1.01m. Thus/, was
approximately estimated to be 1.36m. The wavelengttl.36m for 250Hz. The loffe-Regel
criterion /. /A < 1/(27) which is not satisfied for this frequency. The localization length
estimated by one dimension model is 39m and by two dimensional model 18592m. These
arguments neglect wave nature of sound in scattering processes but the estimated localiza-
tion length by one-dimensional theory is nearer to our humerical estimate. The wave prop-
agation that we have considered may be one dimensional type. However, there still exists a
discrepancy between the theoretical and the numerical estimates. One of the reasons of the
discrepancy originates from the geometrical estimation of transport mean free path.

A more accurate estimation of the transport mean free path based on diffusion process
can be done by wave acoustic calculation. Setting initial distribution of sound pressure as
gaussian shape, the diffusion constanis calculated from the time evolution of the second
moments of wave packet.

((z - mo)Z +(y - y0)2> =4Dt, 9)

wherez, =< 2 > andyy, =< y > . The transport mean free path and the diffusion constant

D is related by
cl
D=— 10
y (10)
wherec and d are sound speed and dimensionality, respectively. Transient simulations of
sound propagations based on wave theory may be carried out by finite difference method

in time domain. Explicit frequency dependence of mean free path could be computed. The
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frequency dependent mean free path may compensate the number of mode in channel or
wavelength, which can predict the localization length of sound wave correctly.

SUMMARY

The localization of sound wave in random obstacles was confirmed by 2-D BEM cal-
culation and the exponential attenuation was observed. The numerical localization length and
that estimated by the weak localization theory were discussed. The mean free path was ob-
tained through geometrical calculations. It was concluded that the transport mean free path
should be determined by wave acoustic method. For further studies, 3-dimensional calcula-
tion in time domain such as finite difference method could be done and both localization and
transport mean free path could be evaluated. In order to research on an influence of quasi
randomness on sound waves, sound propagation through fractal geometry is now under study.
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