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Abstract
Constructing noise maps for large urban areas is a CPU intensive task. Engineering approxi-
mations to outdoor sound propagation are commonly introduced to reduce the computational
complexity. In particular, diffuse reflections are often neglected because of their great com-
putational expense. This paper reports on an effort to approximate the diffusely reflected field
by using a technique called phonon mapping.
In noise mapping, many techniques can be and are adapted from the field ofcomputer graph-
ics where various techniques to approximate indirect lighting exist. A populartechnique in
computer graphics is photon mapping. It was introduced in 1995 by Jensenand is known to be
an efficient algorithm for simulating indirect lighting. In this paper, it will be shown how this
photon mapping algorithm can be adapted to the field of noise mapping to simulate diffuse
reflections.
The phonon mapping algorithm consists of two passes. In the first pass, aphonon map is
built by bouncing phonons, abstract sound particles, through the environment. On each in-
teraction with a (partially) diffusely reflecting surface, it is stored in the phonon map. The
Russian roulette technique is used to determine if the phonon is absorbed, specularly or dif-
fusely reflected. Upon reflection, the phonon is traced through the environment again. This
process is continued until the phonon map is sufficiently populated. The second pass is a more
traditional backward ray tracer. Rays are emitted from the receivers. Specular reflections are
handled as usual but for diffuse reflections, no secondary, reflected rays are cast. Instead, the
phonon map is queried for nearby phonons. Their presence is used to estimate the energy that
is available from this diffuse reflector.

DEFINITIONS

Directional sound powerD: sound power per unit solid angledω. Its units areW

sr
.
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Acoustic radianceL: sound power per unit projected areadA⊥ and per unit solid angle
dω, wheredA⊥ = dA cos θ is the projected area ofdA on the hypothecial surface
orthogonal todω. Its units are W

m2sr
.

INTRODUCTION

Present methods for constructing noise maps of large areas are complex and computational in-
tensive, even when engineering methods are employed. Classic ray/beamtracers [3, 4, 6] often
implement only specular reflections based on image sources. Diffuse reflections are neglected
because of their great computational cost, despite the fact that the diffusely reflected field can
significantly contribute to urban sound fields. This paper presents an effort to approximate the
diffusely reflected field using a technique calledphonon mapping.

Phonon mapping belongs to the family of geometric acoustics, together with methods
like ray tracing and beam tracing, all making the same high frequency approximation. Phonon
mapping is a particle tracing technique in which acoustic power quanta, calledphonons,
are bounced through the environment. At diffuse surfaces, incident phonons are stored in
a phonon map. Later, the phonon map is queried to estimate the exitantacoustic radianceL
at the diffuse reflector.

This technique is adapted from the field of computer graphics where it is known as
photon mapping. It was introduced in 1995 by Jensen [7, 8] as an efficient alternativeto
radiosity[5] andMonte Carlo ray tracing[9] for simulatingglobal illumination.

The goal of noise mapping is to determine how much acoustic powerW reaches a
receiver located atr. It is given by the integral of the incoming directional powerD over all
directions:

W (r) =

∫

Ω

D (r, ω) dω (1)

In geometric acoustics, this integral is written as the sum over all sound pathsthat terminate
atr:

W (r) =
∑

k

Dk (r, ωk) (2)

This sum is taken over the set of all sound paths from a source to the receiver, via any number
of specular or diffuse reflections. It contains an infinite number of sound paths, therefore for
practical applications a finite approximation to this sum must be made.

A traditional ray or beam tracer handles only direct paths, or paths with only specular
reflections. The sum of their contributions isWs. Such a ray tracer disregards all sound paths
with at least one diffuse reflection. The goal of the phonon mapper presented in this paper is
precisely to estimate the sumWd of the contributions due to these omitted paths. Finally, both
results must be summed to getW :

W (r) = Ws (r) + Wd (r) (3)



ICSV13, July 2-6, 2006, Vienna, Austria

FIRST PASS – PHONON TRACING

Emitting Phonons From A Single Source

A number of phonons are emitted from the source with powerP until the phonon map is
populated withNmap phonons.Nemit is the total number of phonons emitted and is not known
a priori since some phonons do not hit a surface at all and thus are notstored in the phonon
map, while others may be stored several times.

All emitted phonons should have the same power. This is important for two reasons:
firstly computational resources are not spent on low power phonons which make little con-
tribution to the result, and secondly it reduces the variance of theradiance estimatein the
gathering pass. Consequently, phonons must be emitted with directional densities propor-
tional to power output. For omnidirectional sources, the phonon emission directionsω must
be uniformly distributed over the unit sphere. This is accomplished by transforming a uniform
variate(ξ1, ξ2) over[0, 1] × [0, 1) according to:

ω (ξ1, ξ2) =





2
√

ξ1 (1 − ξ1) cos 2πξ2

2
√

ξ1 (1 − ξ1) sin 2πξ2

1 − 2ξ1



 (4)

The sum of all phonon powers must equalP , so each phonon should have powerPph =
P

Nemit
. SinceNemit is initially unknown, this can only be computed after the phonon tracing

pass, in a normalisation pass over all stored phonons.

Multiple Sources

In case of multiple sources having powersPi, an additional random variableξ3 is used to select
an emitting source. Each source is selected with probabilitypi = Pi

Ptot
with Ptot =

∑

Pi, such
that a source will emit proportionally many phonons to its (relative) power output. The power
of each phonon will bePph = Ptot

Nemit
.

Surface Interaction

Incident sound power at a surface pointr having normaln is partially reflected back into
the scene. The coefficientsRs andRd correspond to the fraction of specularly and diffusely
reflected sound power, respectively1.

The sound powerP carried by phonons hitting a surface must thus be reflected in
different directions. One way to accomplish this ispath splitting: several new phonons are
emitted carrying the reflected power: one with the specularly reflected power RsP and n

phonons with diffusively reflected power1
n
RdP . Although this technique is straightforward,

it has two major drawbacks: it requires an exponentially growing number ofpaths to be traced,
and the phonons in the phonon map will no longer have similar powers, which increases the
variance of the radiance estimate in the second pass.

1In this paper, the spectral and spatial dependency of bothRs andRd, and the angular dependency ofRs are
not explicitly mentioned to simplify the notation. The implementation takes this into account, however.
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Instead, another technique calledRussian roulette[1, 10] is used to determine whether
the phonon should be absorbed (discarded) or reflected. A uniform random number over[0, 1)

is used to determine which mode of reflection, if any, is chosen:







ξ ∈ [0, Rs) → specular reflection
ξ ∈ [Rs, Rs + Rd) → diffuse reflection
ξ ∈ [Rs + Rd, 1) → absorption

(5)

In case of diffuse reflection, the new directionω is sampled using the diffuse BRDF2

componentρd. If ρd is Lambertian, this function is the constantRd

π
and the new direction is

uniformly sampled from the entire sphere using (4), hemiflipping it to be in the hemisphere
aboutn if necessary (ω · n < 0).

If ρd is sufficiently similar to a Lambertian BRDF, uniform sampling can still be used if
the power of the outgoing phonon is modified according to the realρd. However, the phonons
will no longer have equal powers, increasing the variance of the radiance estimate in the
gathering pass.

Multiple Frequencies

In this paper, the spectral dependency of source powers and reflection coefficients are not
explicitly taken into account. Its effect is however trivial to include using (1/3) octavebands.
Consider a source whose spectral power distribution is given by a numberof bands having
center frequenciesfk and powersPi,k, with Pi =

∑

k Pi,k. A straightforward approach would
be to emit phonons with full spectral information. However, ifRs and Rd are frequency
dependent, this complicates surface interaction: Russian roulette requiresscalar thresholds in
(5), and reflection will change the phonon’s power spectrum.

A better approach, used in the implementation, is to emit single-frequency phonons.
Analogous to selecting one from many sources,f is selected from the setfk with probabil-
ities pk =

Pi,k

Pi
. This approach leaves the Russian roulette computation unchanged, and the

phonon’s power is also unchanged upon reflection.

PHONON MAP CONSTRUCTION

In the first pass, each time a phonon hits a surface withRd > 0, it is stored in a list for
building the phonon map. It is important to do this independently of the Russian roulette
outcome, since the phonon map represents an estimation of theincident, not exitant, power
flux. Each phonon’s powerPph, its positionrph and its incoming directionωph are stored.

Once sufficiently many (Nmap) phonon interactions have been stored, the first pass
is terminated and the phonon map must be built. A balanced, adaptive k-d tree [2, 10] is
constructed from the stored phonons. This is a compact and efficient data structure that enables
locating theM nearest phonons around a pointr in O (M log Nmap) time on average. The

2BRDF (Bidirectional Reflectance Distribution Function) ρ (r, ωi, ωo): reflection coefficient as a function of
positionr, incident and exitant anglesωi andωo.
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cost of storing the tree isO (Nmap), and constructing it (which is performed only once) is
O (Nmap log Nmap).

SECOND PASS – GATHERING PASS

In the second pass,Wd (r) is evaluated at each receiver. The integral gets approximated as a
sum overM random directionωk, chosen from a distribution with probability densityp (ω):

Wd (r) =

∫

Ω

Dd (r, ω) dω ≈
1

M

M
∑

k=1

Dd (r, ωk)

p (ωk)
(6)

If the directions are uniformly distributed over the unit sphere using (4), thenp (ω) = 1

4π
, and

(6) simplifies to:

Wd (r) ≈
4π

M

M
∑

k=1

Dd (r, ωk) (7)

Dd (r, ωk) is computed by casting a ray(r, ωk) into the scene. It intersects a surface atr
′

having normaln′. Dd (r, ωk) equals the acoustic radianceLo (r′,−ωk) leaving the surface at
r
′ towards the receiver. It is evaluated as an integral over the unit hemisphere ℧ aboutn′ of

the incoming radianceLi (r
′, ω′′) and the BRDFρ (r′,−ωk, ω

′′):

Dd (r, ωk) = Lo

(

r
′,−ωk

)

=

∫

℧

ρ
(

r
′,−ωk, ω

′′
)

Li

(

r
′, ω′′

) (

ω′′ · n
)

dω′′ (8)

The BRDF is split into specular and diffuse componentsρs and ρd. The specular part
is non-zero only for the perfectly reflected direction, and is evaluated bytracing the ray
(r′, ωk − 2ωk · n′) and evaluating (9) again at the new intersection.

Lo

(

r
′,−ωk

)

= RsLi

(

r
′, ωk − 2ωk · n′

)

+

∫

℧

ρd

(

r
′,−ωk, ω

′′
)

Li

(

r
′, ω′′

) (

ω′′ · n′
)

dω′′

(9)
The diffuse term is estimated by querying the phonon map. In the neighbourhood ofr′, the
n nearest phonons(Pph, rph, ωph)

j
are found with‖rph − r

′‖ 6 rmax andn 6 nmax. The
phonons provide information about the incident power fluxPi, which must be converted to
incident radianceLi:

Li

(

r
′, ω′′

)

=
d2Pi (r

′, ω′′)

(ω′′ · n′) dAdω′′
(10)

∫

℧

ρd

(

r
′,−ωk, ω

′′
)

Li

(

r
′, ω′′

) (

ω′′ · n′
)

dω′′ ≈
1

A

M
∑

j=1

ρd

(

r
′,−ωk,−ωph,j

)

Pph,j (11)

whereA is the area of the circular neighbourhood in which then phonons are found. Ifr is
the largest distance betweenr′ and then phonons, thenA = πr2. In case of a Lambertian
surface, this simplifies to:

∫

℧

ρd

(

r
′,−ωk, ω

′′
)

Li

(

r
′, ω′′

) (

ω′′ · n′
)

dω′′ ≈
Rd

Aπ

M
∑

j=1

Pph,j (12)
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Figure 1: SPL and error in receiversr (x, 0, z0) with z0 = 10 m; planez = 0 with Rd = 0.95,
Rs = 0; sources (0, 0, z0) with P = 0 dB; M = 225, nmax = 20, rmax = 10 m.

Stratified Sampling

When evaluating (6) with directionsωk generated using (4) with(ξ1, ξ2) directly sampled
from Λ = [0, 1]× [0, 1), the distribution of directions over the full sphere isn’t as good as one
may think. The samples will tend to clump, causing some areas to have too many samples,
while others are undersampled.

It is possible to counteract this, thereby also reducing the variance of theresult, by
usingstratified sampling[10]. The sampling spaceΛ is split intoM1 × M2 equalstrataΛjk

(13), and each sample(ξ1, ξ2)jk is taken from a uniform distribution overΛjk. This way,
samples are much more evenly spread over the sampling space and no directions are severely
undersampled.

Λjk =

[

j

M1

,
j + 1

M1

)

×

[

k

M2

,
k + 1

M2

)

(13)

APPLICATIONS AND RESULTS

Validation

A source with powerP = 0 dB is positioned ats (0, 0, z0) with z0 = 10 m, above a very large
Lambertian reflector withRd = 0.95 andRs = 0. Using the phonon mapper, (6) is evaluated
for receivers at positionsr (x, 0, z0). As a reference solution, (7) is evaluated using a direct
solution forDd (r, ωk) with M = 80000:

Dd (r, ωk) = Lo

(

r
′,−ωk

)

=
Rs

π

P

‖s − r
′‖2

(s − r
′) · n′

‖s − r
′‖

(14)

Figure 1 shows the sound level and error for two phonon mapping simulationsagainst the
reference. It can be seen that the photon mapper slightly overestimates thelevels. This is due
to an understimation ofA in (11).A is a too aggressive a bound for the phonons.
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(a) diffuse componentWd of noise map (b) local expected error onWd

Figure 2: Diffuse componentWd of noise map and local expected error for one sources (30, 30, 4)

with P = 0 dB; receiversr (x, y, 4) with ∆x = ∆y = 1 m; ground & buildingsRd = 0.05, Rs = 0;
Nmap = 40000, M = 100, nmax = 20, rmax = 10 m.

Variance Statistics

Monte Carlo simulations often suffer

Figure 3: percentiles of expected error distribution
for variousM (number of rays cast in gather pass),
stratified vs. unstratified sampling of rays. Other
parameters as in figure 2.

from noise or variance in the estimate. For
the phonon mapper as described in this pa-
per, this is mainly influenced by the num-
ber M of rays cast in the gathering pass.
The local expected error at each point of the
map is estimated using the standard devia-
tion of the results of 20 different simulation
runs with different random seeds, since the
average will converge to the exact solution.
The simulation consists of one source, 4 m
above a ground surface, and in the vicinity
of some buildings. Figure 2 shows the result
of one run and the local expected error for
M = 100. It can clearly be seen that the
largest errors are found where the source occluded by an obstacle,since fewer phonons can
be sampled. Fortunately, the sound level significantly drops in such regions, reducing the im-
portance of the error.

To get an idea of the overall expected error, the distribution of the local error over the
map is examined. The 90th and 95th percentiles measure how well the largest differences
behave, while the 50th percentile is a measure of the average spatial error. Figure 3 shows
these percentiles. It can clearly be seen that the expected error decreases withM , however at
a linearly increasing cost. It can also be seen that stratified sampling decreases the expected



B. de Greve, T. Willems, T. De Muer, D. Botteldooren

error for the sameM , without incurring significant additional computational cost.

POSSIBLE IMPROVEMENTS

In this paper, the diffraction of sound paths is not taken into account forsimplicity of pre-
sentation. A polygonal beam tracer [3, 4] can easily accommodate this effect in Ws for paths
without diffuse reflection. However, the phonon mapper must be extended to handle paths
with both diffraction and diffuse reflection. Based on Fresnel zones, Russian roulette may be
applied to subject phonons to diffraction.

CONCLUSIONS

In this paper, it is shown how thephoton mappingtechnique is adapted to the field of noise
mapping for efficiently simulating the effect of diffuse reflections. The newphonon mapping
technique is orthogonal to traditional ray/beam tracing, which handles the strictly specular
paths.

The phonon mapper consists of two passes: a phonon tracing pass, where phonons are
propagated in an environment to form the phonon map, and a gathering pass where, at each
receiver, the incident diffusive sound field is reconstructed from thephonon map.

The variance of the result is mainly influenced by the number and distribution of gath-
ering rays, the latter of which can be significantly improved using stratified sampling.
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