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Abstract
In this paper, a methodology for locating and determining the size of transverse open cracks in
beams based on time-frequency analysis of transient flexural waves is presented. A beam with
a transverse open crack modeled as a rotational spring is considered. The wave field along the
beam generated by an impact force is calculated and expressions for the reflection coefficients
as a function of frequency and crack depth are derived. Simulated signals for the acceleration
response of the beam for different crack depths are calculated and further analysed employing
time-frequency analysis to extract the dispersive characteristics. The location of the crack is
estimated using the arrival time of reflected waves. The ratio of the reflected wave energy to
the incident wave energy is calculated and used as an indicator of crack size. The estimated
reflection coefficients from the simulated signals are in excellent agreement with theory. To
validate the theoretical predictions, a series of experiments on a cracked brass beam were car-
ried out. The measured signals were analysed and both the location and size of the crack were
estimated. The experimental results verify the effectiveness of the proposed methodology.

INTRODUCTION

Damage detection in structures is a problem of practical importance that has received con-
siderable amount of interest the last decades. Among the existing methods, wave-based tech-
niques gained ground. The basic concept, in most of these techniques, relies on the fact that
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a propagative wave will be reflected and partially transmitted when it encounters a defect.
Measurements of the reflected and/or transmitted waves can provide significant information
about the damage location and size. Unlike ultrasonic waves, middle frequency waves are
not only sensitive to damage but also decay slowly; therefore, they are suitable for global in-
spection of structures. Since flexural waves are dispersive, a key issue in wave-based precise
damage identification is the use of time-frequency analysis allowing the description of the
time variation of each frequency component.

So far, the continuous wavelet transform (CWT) [7] has been adopted for the analysis
of guided waves because of its local and self-adaptive time-frequency resolution properties.
The CWT has been applied to analyse simulated flexural waves in an Euler-Bernoulli beam,
whereas it has been experimentally verified in estimating the group velocity and impact site
[3, 5]. Furthermore, the CWT has been employed to determine the location of a crack in a
Timoshenko beam through flexural waves analysis [10]. Recently, the CWT has been utilised
to identify both the location and depth of a crack in a cantilever beam [4, 6].

In the present work, a method for estimating both the location and size of a crack in a
beam by analysing transient flexural waves is presented. Four different time-frequency rep-
resentations, namely the CWT, the smoothed pseudo-Wigner distribution (SWPD) [1], the
Hilbert-Huang transform (HHT) [2], and the smoothed pseudo-Wigner trispectrum distribu-
tion (SPWTD) [8] are investigated. The location of the crack is estimated by calculating the
arrival times of incident and reflected waves with different group velocities. The ratio of the
reflected wave energy to the incident wave one is used as an estimator of crack size. Exper-
imental results in a brass beam have shown good agreement with predictions justifying the
accuracy of the proposed method. The advantages and shortcomings of each time-frequency
representation employed are compared and discussed.

VIBRATION MODEL OF CRACKED INFINITE BEAM

A beam of infinite length along the x axis, with uniform rectangular cross-section w × w,
which has a transverse surface crack located at the origin of the x axis (Fig. 1), is considered.
The beam is excited by a force whose Fourier transform is F (ω). The force acts at a distance
L from the crack position. For each frequency ω the harmonic solution of the displacement
n(x, ω) for the three regions defined along the beam is given by

R1 : x ≤ −L n1(x, ω) = A−

1 (ω)e
jkx +B−

1 (ω)e
kx

R2 : −L ≤ x ≤ 0 n2(x, ω) = A+2 (ω)e
−jkx +B+2 (ω)e

−kx +A−

2 (ω)e
jkx +B−

2 (ω)e
kx

R3 : 0 ≤ x n3(x, ω) = A+3 (ω)e
−jkx +B+3 (ω)e

−kx (1)

In (1), the A and B coefficients are related to travelling and evanescent waves, respectively.
The subscripts refer to the corresponding regions, whereas the plus and minus superscripts
denote propagation along the positive and negative x direction, respectively. The wavenumber
k is derived by the Euler-Bernoulli model for a beam with mass density ρ, cross-sectional area
S, Young’s modulus E, and moment of inertia I , i.e., k = [ω2ρS/(EI)]1/4.
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Figure 1: Geometry of the cracked infinitely long beam under study.

The A and B coefficients are derived from the fulfilment of boundary conditions at the
locations of the impact and the crack. At the impact (x = −L) the continuity of displacement
(n1 = n2), gradient of displacement (∂xn1 = ∂xn2), moment (∂2xn1 = ∂2xn2) and shear
(∂3xn2 − ∂3xn1 = F/(EI)) is imposed. Also, at the crack (x = 0) the continuity of displace-
ment (n2 = n3), moment (∂2xn2 = ∂2xn3), and shear (∂3xn2 = ∂3xn3) is imposed. The crack
can be modelled by a massless rotational spring, whose bending stiffness KT is given by [9]

KT = 0.1871
EI

wJ(a/w)
(2)

where a is the depth of the crack and J(a/w) is the local compliance function given by

J(u) = 1.98u2 − 3.277u3 + 14.43u4 − 31.26u5 + 63.56u6

−103.36u7 + 147.52u8 − 127.69u9 + 61.5u10. (3)

Under this assumption, a boundary condition, which is related to the equilibrium between
transmitted bending moment and spring rotation, is imposed at the crack location, i.e.,

−EI∂2xn2(0, ω) = KT [∂xn2(0, ω)− ∂xn3(0, ω)]. (4)

By solving the system of the eight equations derived, the A and B coefficients are evaluated.
In particular, the coefficients related to the wave travelling toward the crack are given by

A+2 (ω) = −j
F

4EIk3
e−jkL, B+2 (ω) = −

F

4EIk3
e−kL, (5)

while the coefficients associated with the reflected wave are related to the incident wave ones
through the reflection matrix R(ω), i.e.,

[

A−

2 (ω)

B−

2 (ω)

]

= R(ω)

[

A+2 (ω)

B+2 (ω)

]

(6)

The reflection matrix, which depends on the properties of the crack is given by

R(ω) = −
k̃

k̃(1− j)− 4j

[

1 −1

j −j

]

(7)

where k̃ = EIk/KT . As a result, according to (1), n2(x, ω) is determined in region R2, while
the associated acceleration γ2(x, t) is obtained as

γ2(x, t) = −
1

2π

∫ +∞

−∞

ω2n2(x, ω)ejωtdω. (8)
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Figure 2: (a) Typical simulated acceleration signal. (b) Time variation of the wavelet coeffi-
cient magnitude, for frequency ω0.

From the above analysis, it is evident that the characteristics of the crack, i.e., location
and size, are introduced through the elements of the reflection matrix (7). Furthermore, since
the evanescent waves related to the B coefficients do not significantly contribute to the accel-
eration, the magnitude of the (1,1) element of the reflection matrix, which is considered in the
following as the reflection coefficient magnitude, can estimated by

|R̂11(ω)| = [Er(ω)/Ei(ω)]
1/2 (9)

where Ei(ω) and Er(ω) are the incident and the reflected energy from the crack, respectively,
at frequency ω. This energy-based approach is adopted to compensate for the dispersion ef-
fect, since the energy associated with each distinct frequency is spread in time.

Let us consider again the cracked infinite beam is impacted by delta Dirac force and the
acceleration is evaluated at a position in region R2 placed at a distance LM from the crack.
A typical simulated acceleration signal is illustrated in Fig. 2(a) where the parts of the signal
related to the incident and the reflected waves are pointed with arrows. If the CWT is applied,
the estimate of the reflection coefficient magnitude at frequency ω0 is derived from the time
variation of the wavelet coefficient magnitude, |W (t, ω0)| (Fig. 2(b)). According to (9), the
estimate of the reflection coefficient magnitude is given by

|R̂11(ω0)| =

(
∫

∆Tr
P (t, ω0)dt

∫

∆Ti

P (t, ω0)dt

)1/2

(10)

where P is the power distribution (P (t, ω) = |W (t, ω)|2 for the CWT case), while ∆Ti and
∆Tr are the durations of the incident and the reflected wave, respectively. The time instances
ti(ω0) and tr(ω0) of maximum values |W (ti, ω0)| and |W (tr, ω0)| represent the arrival times
of the incident and the reflected waves, respectively. Thus, if the group velocity cg(ω0) is
known, the estimate of the distance LM is given by

L̂M =
tr(ω0)− ti(ω0)

2cg(ω0)
. (11)
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Figure 3: Estimated reflection coefficient magnitude vs. frequency based on simulated signals
for relative crack depths of 10%, 20%, 30%, and 40%. Results derived by (a) CWT, (b) SPWD,
(c) HHT, and (d) SPWTD. Lines with asterisks stand for the theoretical curves.

SIMULATED RESULTS

An infinite brass beam of rectangular cross-section S = 0.016 × 0.016 m2 with modulus of
elasticity E = 97.66 GPa and mass density ρ = 8500 kg/m3 is considered. A crack of vary-
ing depth is introduced and the beam is impacted by a delta Dirac force at a distance L = 8 m
from crack location. The acceleration response (8) is evaluated at a position LM = 7 m from
the crack. Simulated acceleration signals are calculated for relative crack depths of 10%–40%
in steps of 10% using a sampling frequency of 51200 Hz. Each case is analysed using four
methods, namely CWT, SPWD, HHT and SPWTD. The curves of the reflection coefficient
magnitude, for all crack depths considered, are predicted in the [4–16 kHz] frequency range
by using (10). The results for all methods examined are shown in Fig. 3. For comparison
reasons, the theoretical curves of the reflection coefficient derived from (7) are also depicted.
The reflection coefficients predicted through the CWT analysis (Fig. 3(a)) follow the theoret-
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ical curves consistently for all crack depths and over the entire frequency range involved. The
estimated reflection coefficient magnitude derived by the SPWD is in excellent agreement
with theory (Fig. 3(b)). Similar results are obtained by the HHT (Fig. 3(c)) as well as by the
SPWTD (Fig. 3(d)). The reflection coefficient magnitude derived by the HHT (Fig. 3(c)), al-
though it follows the trend of the theoretical curves, exhibits an evident fluctuation, appearing
stronger in the case of a relative crack depth of 10%. The reason for this fluctuation is that the
HHT time-frequency distribution appears in distinct point form resulting in low resolution of
power with respect to frequency. For the SPWTD (Fig. 3(d)), the predicted curves coincide
with the theoretical ones up to 12 kHz, after which, a small divergence appears.

EXPERIMENTAL RESULTS

The experimental arrangement consisted of a brass beam of total length L = 3 m, while the
rest of its properties were identical to those used in the numerical simulations. The beam was
suspended horizontally by thin threads at a distance L/10 away from the ends to approximate
free-free boundary conditions. A saw cut was introduced at xc = 1.01 m from the left end to
simulate the transverse crack. A miniature accelerometer was mounted at xa = 0.01 m from
the left free end to measure the response of the beam. The beam was excited by the impact of
a steel ball (diameter 6 mm) dropped from a constant height at the left free end. Experiments
were performed for three different relative crack depths, namely 10%, 20% and 30% and the
corresponding spectra were obtained by the application of the four time-frequency methods.

Following the procedure described in the simulated results the reflection coefficients are
estimated. It can be observed from Figs. 4(a) and 4(b) that both CWT and SPWD give similar
results, with the SPWD curves being slightly closer to the theoretical ones (for relative crack
depths of 20% and 30%). The predicted curves seem to deviate from the theoretical ones, for
all crack depths, mainly because the theoretical reflection coefficient curves are derived from
the Euler-Bernoulli beam theory that is an approximation model. The HHT (Fig. 4(c)) and
SPWTD (Fig. 4(d)) seem to be more sensitive to the above-mentioned imponderable factor.
More specifically, although the SPWTD result for a 10% crack proves to be quite accurate,
the reflection coefficients for larger crack depths exhibit a considerable deviation from theory.
This deviation is also observed for the case of HHT. Furthermore, the HHT has failed to give
a prediction for the case of a 10% crack depth.

The frequency dependent group velocity of the specific beam is obtained experimen-
tally by exciting a heathy beam of the same characteristics and is determined as cg(ω) =

2LB/[tb(ω) − ti(ω)] where LB is the distance between the measurement position and the
boundary of the beam, while tb and ti denote the arrival times of the reflected and incident
waves, respectively. Then cg(ω) is utilised in (11) to estimate the crack location. Table 1
presents the mean and the standard deviation of the absolute error of the estimated crack lo-
cation (LM = 1 m is the real location). From these results, we conclude that the SPWD
performs better than any of the other methods. The CWT and HHT perform equally well in
estimating the crack location, whereas the SPWTD exhibits considerable errors.
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Figure 4: Estimated reflection coefficient vs. frequency based on experimental signals for
relative crack depths of 10%, 20%, and 30%. Results derived by (a) CWT, (b) SPWD, (c)
HHT, and (d) SPWTD. Lines with asterisks stand for the theoretical curves.

Table 1: Mean value ε̄ and standard deviation σε of the absolute error of the estimated crack
location derived by the four methods examined based on experimental signals.

Crack Depth 10% 20% 30%
ε̄ σε ε̄ σε ε̄ σε

CWT 0.0211 0.0147 0.0175 0.0127 0.0155 0.0115
SPWD 0.0069 0.0048 0.0064 0.0045 0.0063 0.0044
HHT 0.0180 0.0137 0.0166 0.0118 0.0261 0.0185
SPWTD 0.0548 0.0308 0.0508 0.0431 0.1228 0.0432

CONCLUSIONS

In this paper, four time-frequency representation methods (CWT, SPWD, HHT, and SPWTD)
were employed for detecting cracks in beams. The performance of each method was investi-
gated by means of both simulated and experimental signals. Results indicate that the SPWD
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provides the best performance in accurately estimating both the reflection coefficient magni-
tude and the location of the crack. The results derived by the CWT were also reliable. How-
ever, the SPWD outperforms the CWT, because the SPWD results in finer resolution in the
time-frequency plane. Concerning the HHT, it exhibited significant deviation in estimating
the reflection coefficient magnitude when experimental signals were analysed. This could be
attributed to fact that the time-frequency power distribution in the HHT appears in the form
of distinct points. The HHT is also computationally demanding, because it employs empirical
mode decomposition of the original signal into intrinsic mode functions. Finally, the SPWTD,
compared to the other methods, gave the less accurate results when applied to experimental
signals. Its shortcoming could be attributed to the fact that the SPWTD, despite the smooth-
ing procedure that involves, it is still affected by the cross-terms in the time-frequency plane.
Concluding, among the methods examined, the SPWD is the most accurate and reliable one
for crack detection based on wave propagation of transient flexural waves. Also, the CWT
performance could be further improved by appropriate selection of the mother wavelet used.

References

[1] L. Cohen, “Time-frequency distributions – A review”, Proc. IEEE, 77, 941-981 (1989)

[2] N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Sheng, N. C. Yen,
C. C. Tung, H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for
nonlinear and non-stationary time series analysis”, Proc. of the Royal Soc. London Ser.
A - Math. Phys. Eng. Sci., 454, 903-995 (1998)

[3] H. Inoue, K. Kishimoto, T. Shibuya, “Experimental wavelet analysis of flexural waves
in beams”, Exp. Mech., 36, 212-217 (1996)

[4] I. K. Kim, Y. Y. Kim, “Damage size estimation by the continuous wavelet ridge analysis
of dispersive bending waves in beam”, J. Sound Vibr., 287, 707-722 (2005)

[5] K. Kishimoto, H. I. M. Hamada, T. Shibuya, “Time-frequency analysis of dispersive
waves by means of wavelet transform”, J. Appl. Mech., Trans. ASME, 62, 841-846
(1995)

[6] Z. Li, S. Xia, J. Wang, X. Su, “Damage detection of cracked beams based on wavelet
transform”, Int. J. Impact Eng., 32, 1190-1200 (2006)

[7] S. Mallat, Wavelet Tour of Signal Processing. (Academic Press, New York, 1998)

[8] C. Nikias, A. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing
Framework. (Prentice-Hall, Englewood Cliffs, 1993)

[9] H. Okamura, H. W. Liu, C.-S. Shu, H. Liebowitz, “A cracked column under compres-
sion”, Eng. Fract. Mech., 1, 547-564 (1969)

[10] J. Y. Tian, A. Li, X. Su, “Crack detection in beams by wavelet analysis of transient
flexural waves”, J. Sound and Vibr., 261, 715-727 (2003)


