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Abstract
In this paper we will address some important technical features of finite element (FE) codes
used in computational acoustics. We will present schemes (i) to determine discretization er-
rors, (ii) to handle frequency dependent damping along the propagation paths of acoustic
waves, (iii) perfectly matched layers for the efficient treatment of open domain problems in
the frequency domain, and (iv) to combine FE-meshes (subdomains) with quite different mesh
sizes at the boundary of the subdomains, so called non-matching grids.

INTRODUCTION

Modern numerical simulation tools allow a precise analysisof the generation and propagation
of sound. However, up to now, a variety of computational features enhancing their applicabil-
ity are missing in these codes. Therefore, it is sometimes cumbersome to come to practically
useful results when applying such numerical codes to real life problems. In this paper, some
of these lacking features will be addressed and, furthermore, their implementation and test in
a finite element environment is reported.
When computing the propagation of sound over long distancesthe numerical errors due to
spatial and timediscretization errors will accumulate. Many sound propagation media ex-
hibit frequency dependent damping. This asks for special treatment within finite element
codes. We will demonstrate how damping with an arbitrary frequency dependent damping
coefficient can be handled by finite elements for time domain analysis. When using finite
elements in open domain problems one has to overcome the difficulty of reflexions at the
boundaries of the computational domain. We will present a new technique based onPerfectly
Matched Layers (PML). When computing sound in neighbouring domains with quite dif-
ferent propagation velocities (wavelengths) it is useful to use different finite element grids for
these domains. We present a scheme for which it is not necessary that the grids match at their
neighbouring boundaries. These are callednon-matching grids.



DISCRETIZATION ERROR

It is a well known phenomena, that the application of the classical Galerkin-FEM leads to an
increasing numerical error with increasing acoustic wave numberk = ω/c = 2πf/c (f and
c denotes the frequency and speed of sound). The main effect isdue to numerical dispersion,
which shows a numerical wave numberkh being different from the continuous wave number
k. Therewith, the acoustic waves propagate with a wrong soundspeed and show a phase shift
compared to the analytical solution.
The numerical error can be derived as a function of the wave numberk and the discretization
parameterh [8]

eh ≤ C1θ + C2k θ2 with θ = kh (1)

eh =
|p′ − p′h|1

|p′|1
with |u|1 =

√

∫
(

∂u

∂x

)2

dx . (2)

In (1) - (2)C1, C2 denote constants which are independent ofθ. The first term in (1) describes
the approximation error, which can be effectively controlled by using accordingly smaller
mesh sizesh by increasing wave numberk. However, the second term in (1) denotes the
pollution-error, which increases withk3 and which leads to severe problems for large wave
numbers. In [1] a general formula for this error including the order of the finite element
shape functions (p-FEM) can be found, and it is shown, that this part of the error can just be
effectively controlled by increasing order of the finite element shape functions.

FREQUENCY DEPENDENT DAMPING OF PROPAGATION MEDIUM

The damping of acoustic waves along their propagation pathsis an imprortant issue which has
to be addressed within precise computer simulations of acoustic phenomena. Damping in the
megahertz range for biological matter, for example, suggest the description with a frequency
dependency according to a power law. With the two material parametersα0 andy we can
make the following ansatz for the damping coefficientα

α(ω) = α0|ω|
y , 0 < y ≤ 2 . (3)

For most soft tissue we find that the frequency power factory lies between 1.0 and 1.5. For
y 6= 2 phase dispersion is observed to occur. The power factor is a material characteristics
and an accurate determination is one of the goals of according measurements [2]. Because the
diffraction error is frequency dependent, the shape of retrieved damping and dispersion curves
is altered, hence falsified values ofy are determined. Popular corrections of diffraction effects
use approximative solutions to the analytical approach already discussed in [2]. Admittedly,
those corrections neglect damping in the propagation path and are only valid for plane faced
transducers. In our approach we retrieve such correction ofdiffraction from finite element
simulations.



Because we are solely utilizing axisymmetric transmittersand receivers, we are able to per-
form the simulations in a 2D axisymmetric setup. In the simulations described in the following
we chose the distance between transducer and receiver to bez = 10 cm, which is owed to the
size of the mesh of 2.35 million quadrilateral finite elements.
We incorporated attenuation with a power law frequency dependency and dispersion calcu-
lated from Kramers-Kronig relations. Both can be combined to a single term in the time do-
main wave equation [11], which was implemented for transient simulations using a fractional
derivative. In theory the computation of fractional derivatives requires the whole history of
the function in a weighted form. For a time discrete functionof the acoustic pressurep′n+1 at
time stepn + 1 the fractional derivative of ordery can be expressed as

Dyp′n+1 =
n+1
∑

k=0

wk · p′n+1−k , (4)

whereDy denotes the fractional derivative operator. In contrast, derivatives of integer order
depend solely on the local behavior. Beforehand, two popular algorithms for computing (4)
were evaluated. The first algorithm is based on generalized finite differences and is mostly
referred to by the names of Grünwald and Letnikov in literature (see e.g. Gorenflo [7] for a
description). Luise Blank published a collocation approximation with polynomial splines [6],
which we used as second algorithm. With the latter algorithm, we were able to achieve a rela-
tive error of less than 0.1 % after 10 cm of propagation (corresponds to seventy wavelengths).
For demonstration, we investigated a bone sample of thicknessd = 1 cm with a propagation
velocity of cs = 3200m

s
. Now, the frequency dependent damping of bone with parameters

α0 = 1.6633 · 10−6 and frequency power factory = 1.1 is taken into account. For water we
use thermoviscous damping with the valuesα0 = 6.1 · 10−16 andy = 2.
In Fig. 1 the analytical solution (analyt.) is compared withthe solutions retrieved from two
FE-simulations, where thermoviscous damping (α ∝ ω2) and fractional damping (α ∝ ωy)
was applied to the sample region. In the thermoviscous case,the parameterα0 was adapted so
that the value of the damping coefficientα equals the one of the fractional damping model for
a frequency of 1 MHz. Absolute value and phase of the correction function utilizing thermo-
viscous damping stay close to the analytical solution, which can be explained with the similar
frequency dependence of damping in the sample and referencesimulation. For the fractional
damping model the curves differ greatly. We conclude from this that the frequency depen-
dence of damping has an influence on the shape of the correction function, so for accurate
results the correct damping behavior has to be considered.

PERFECTLY MATCHED LAYERS

One of the great challenges for each volume discretization scheme is the precise modeling of
free radiation problems. The crucial point for these computations is, that the numerical scheme
avoids any reflections at the computational boundaries. To achieve this requirement, we have
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Figure 1: Comparison of the thermoviscous and fractional damping model for bone material.
Ds andDw represent the complex diffraction correction functions for the sample (Ds) and
water (Dw).

developed an enhanced PML (Perfectly Matched Layer) method, which allows computational
domains being a fraction of the acoustic wavelength.
We start at the mass as well as momentum conservation equations for linear acoustics, which
read as follows

∂p′

∂t
= −ρ0c

2
∇v

′ (5)

∂v
′

∂t
= −

1

ρ0

∇p′ . (6)

In (5) and (6)p′ denotes the acoustic pressure,v
′ the particle velocity,ρ0 the mean density of

the fluid andc the speed of sound. According to [4] we apply a splitting of the acoustic pres-
surep′ into p′x, p′y andp′z. Therewith, the mass as well as momentum conservation equation
for linear acoustics change to

∂p′x
∂t

+ σxp′x = −ρ0c
2 v′x
∂x

∂v′x
∂t

+ σxv′x = −
1

ρ0

∂p′

∂x
(7)

∂p′y
∂t

+ σyp
′

y = −ρ0c
2
v′y
∂y

∂v′y
∂t

+ σyv
′

y = −
1

ρ0

∂p′

∂y
(8)

∂p′z
∂t

+ σzp
′

z = −ρ0c
2 v′z
∂z

∂v′z
∂t

+ σzv
′

z = −
1

ρ0

∂p′

∂z
. (9)

In the above equationsσx, σy and σz are damping functions, which are zero within the
acoustic propagation domain and which are different from zero within the PML-layer en-
closing the acoustic propagation domain. We will investigate damping functions, which are
constant all over the PML-layer, which increase quadratically as well as inverse with the dis-
tance.
Applying a Fourier-transformation to (7) - (9), we arrive atthe following Helmholtz equation

γ(x2)γ(x3)
∂

∂x1

(

1

γ(x1)

∂p̂

∂x1

)

(10)



+γ(x1)γ(x3)
∂

∂x2

(

1

γ(x2)

∂p̂

∂x2

)

(11)

+γ(x1)γ(x2)
∂

∂x3

(

1

γ(x3)

∂p̂

∂x3

)

= γ(x1)γ(x2)γ(x3) k2 p̂ . (12)

with k the acoustic wave number.
In order to evaluate the PML-method, we perform a computation of a 2D example, as dis-
played in Fig. 2. This example, where we apply an acoustic load at the center, has an analytic

Figure 2: Setup of computational domain

solution according to the Hankel function. Table 1 containsthe total L2-error as well as the
relative error at the corner of the propagation region. In Fig. 3 we show the contour lines of the

Table 1: Error evaluation for different damping functionsσ

PML const. PML quadDist PML inverseDist
L2-error 0.001613 0.001351 0.001193
rel. Error (λ/5,λ/5) 0.22% 0.135% 0.11%

acoustic pressure inside the propagation as well as PML-region and in Fig. 4 we display the
relative error as a contour plot. It has to be noticed, that the Hankel function has a singularity
at (0, 0) and, therefore, the comparison between analytical and numerical solution makes no
sense near this point.

NON-MATCHING GRIDS

In this section, we face a common problem within computational acoustics, namely that the
computational grid in one subdomain can be considerably coarser than in the another subdo-
main. In order to keep as much flexibility as possible, we use independently generated grids
which are well suited for approximating the solution of decoupled local subproblems in each



Figure 3: Contour lines of acoustic pressure in-
side propagation region and PML-region

Figure 4: Contour plot of the relative error

subdomain. Therefore, we have to deal with the situation of nonconforming grids appearing at
the common interface of two subdomains. Special care has to be taken in order to define and
implement the appropriate discrete coupling operators which is published with more detail in
[10]. Here, we will briefly deal with the interface conditionof the acoustic-acoustic interface
and then show results.
For this type of coupled problem, we can use the well-tested and well-studied framework
of mortar methods [5]. Both subdomainsΩ1 and Ω2 are occupied by an acoustic fluid.
Thus, in each subdomain we have to solve the wave equation forthe acoustic pressures
p′i : Ωi × (0, T ) → IR,

1

c2
p̈′i − ∆ p′i = fi, in Ωi × (0, T ), i = 1, 2 (13)

completed by appropriate initial conditions at timet = 0 and boundary conditions on the
global boundaryΓ.
For simplicity, we use the same equation and primal variablein both subdomains, and the
interface is just artificial, i.e., no material change occurs. We refer to [3, 9] for the treatment
of more general situations. Therefore, in the strong setting, it is natural to impose continuity
in the trace and flux of the acoustic pressure, along the common interfaceΓ I, i.e.,

p′1 = p′2 and
∂p′1
∂n

=
∂p′2
∂n

on Γ I.

The flux coupling condition will be enforced in a strong senseby introducing the Lagrange
multiplier

λ = −
∂p′1
∂n

= −
∂p′2
∂n

, (14)

whereas the continuity in the trace will be understood in a weak sense as
∫

Γ I

(p′1 − p′2)µ dΓ = 0, (15)



for all test functionsµ out of a suitable Lagrange multiplier space. We note that a correct
functional framework is presented in [3].
As test example, we choose the domainΩ = (−0.05, 0.05) m2 and decompose it intoΩ1 =

(−0.0125, 0.0125) m2 andΩ2 = Ω \ Ω1. A point source is located at(0, 0) and realized as a
Dirichlet node dictating the solution to be

u(0, 0, t) = sin(2πft),

with a frequencyf = 1000 Hz. As medium, we choose air, i.e.,c = 343m/s. We use a time
step size∆t = 10µs. Figure 5 shows the initial grid and two zooms towards the interface

Figure 5: Initial grid, two zooms into the computational grid.

of the actual computational grid, which was obtained by uniformly refining the grid onΩ1

six times and the one onΩ2 three times. Thus, on the lower interface side, we have a com-
pletely nonconforming situation, whereas on the other sides, the inner interface grid is a pure
refinement of the outer one, with a mesh size ratioh1/h2 = 1/8. In Fig. 6, the isolines of
the solutions for two settings after 28 time steps att = 280µs are plotted. For the left plot,

Figure 6: Acoustic pressure contour lines at timet = 280µs, Lagrange multipliers defined
with respect to the fine side (left) and to the coarse side (right).

the discrete Lagrange multiplier space was chosen with respect to the fine grid onΩ1, for the
right one, it is defined on the coarse grid ofΩ2. There is no qualitative and no noteworthy
quantitative difference between both solutions. Thus, forthis example, the choice of the grid
for the Lagrange multiplier space does not influence the numerical solution. More important,



both solutions are well behaved near the interface and no artificial reflections occur despite
the very large difference in the mesh sizesh1 andh2.

CONCLUSIONS

In this paper we first addressed some problems within computational acoustics when do-
ing finite element calculations. These are frequency dependent discretization errors as well
as damping of the propagation medium. Futhreon, we presented two schemes, which are per-
fectly matched layers and non-matching grids. When performing calculations in the frequency
domain, perfectly matched layers allow the ideal absorption of acoustic energy at the border of
the computational domain. Therewith, they are useful for the treatment of open domain prob-
lems. Non-matching grids enhance the efficieny and accuracyof finite element calculations
which ask for different mesh sizing in different subdomains.
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