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Abstract

In this paper we will address some important technical festof finite element (FE) codes
used in computational acoustics. We will present schenés (letermine discretization er-
rors, (ii) to handle frequency dependent damping along tiepamation paths of acoustic
waves, (i) perfectly matched layers for the efficient treant of open domain problems in
the frequency domain, and (iv) to combine FE-meshes (subtt@nwith quite different mesh
sizes at the boundary of the subdomains, so called non-mgtghids.

INTRODUCTION

Modern numerical simulation tools allow a precise analg$ihie generation and propagation
of sound. However, up to now, a variety of computationalidesg enhancing their applicabil-
ity are missing in these codes. Therefore, it is sometimeathensome to come to practically
useful results when applying such numerical codes to rieaplioblems. In this paper, some
of these lacking features will be addressed and, furthezptbeir implementation and test in
a finite element environment is reported.

When computing the propagation of sound over long distatftesiumerical errors due to
spatial and timaliscretization errors will accumulate. Many sound propagation media ex-
hibit frequency dependent damping. This asks for special treatment within finite element
codes. We will demonstrate how damping with an arbitrargdiency dependent damping
coefficient can be handled by finite elements for time domaiayasis. When using finite
elements in open domain problems one has to overcome theudiffiof reflexions at the
boundaries of the computational domain. We will presentvateehnique based dperfectly
Matched Layers (PML). When computing sound in neighbouring domains with quite di
ferent propagation velocities (wavelengths) it is usefulse different finite element grids for
these domains. We present a scheme for which it is not negabsa the grids match at their
neighbouring boundaries. These are cafled-matching grids.



DISCRETIZATION ERROR

It is a well known phenomena, that the application of thesitzd Galerkin-FEM leads to an
increasing numerical error with increasing acoustic wavalerk = w/c = 27 f/c (f and

c denotes the frequency and speed of sound). The main effdaeito numerical dispersion,
which shows a numerical wave numbiér being different from the continuous wave number
k. Therewith, the acoustic waves propagate with a wrong sepedd and show a phase shift
compared to the analytical solution.

The numerical error can be derived as a function of the wawsbeuk and the discretization
parameten [8]
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In @) - (A) C1, Cs denote constants which are independertt. @he first term in[{IL) describes
the approximation error, which can be effectively con&dllby using accordingly smaller
mesh sizes by increasing wave numbér. However, the second term ifil (1) denotes the
pollution-error, which increases witl? and which leads to severe problems for large wave
numbers. In[[il] a general formula for this error including tbrder of the finite element
shape functions (p-FEM) can be found, and it is shown, thatghrt of the error can just be
effectively controlled by increasing order of the finiteraknt shape functions.

FREQUENCY DEPENDENT DAMPING OF PROPAGATION MEDIUM

The damping of acoustic waves along their propagation pa#nrsimprortant issue which has
to be addressed within precise computer simulations ofstimophenomena. Damping in the
megahertz range for biological matter, for example, sugipesdescription with a frequency
dependency according to a power law. With the two materigdupatersey andy we can
make the following ansatz for the damping coefficiant

alw) =alw], 0<y<2. (3)

For most soft tissue we find that the frequency power fagties between 1.0 and 1.5. For
y # 2 phase dispersion is observed to occur. The power factor iatarial characteristics
and an accurate determination is one of the goals of aca@prdeasurementsi[2]. Because the
diffraction error is frequency dependent, the shape ofenetd damping and dispersion curves
is altered, hence falsified valuesipére determined. Popular corrections of diffraction effect
use approximative solutions to the analytical approachadly discussed imnl[2]. Admittedly,
those corrections neglect damping in the propagation padraee only valid for plane faced
transducers. In our approach we retrieve such correctiagifiohction from finite element
simulations.



Because we are solely utilizing axisymmetric transmitard receivers, we are able to per-
form the simulations in a 2D axisymmetric setup. In the satiahs described in the following
we chose the distance between transducer and receiverte-ié c¢m, which is owed to the
size of the mesh of 2.35 million quadrilateral finite elensent

We incorporated attenuation with a power law frequency ddpecy and dispersion calcu-
lated from Kramers-Kronig relations. Both can be combired single term in the time do-
main wave equatiori[11], which was implemented for trartssénulations using a fractional
derivative. In theory the computation of fractional detives requires the whole history of
the function in a weighted form. For a time discrete functidhe acoustic pressuyg, . ; at
time stepn + 1 the fractional derivative of order can be expressed as

n+1
Dyp;wrl = Z Wi 'p;l+1—k; ) (4)
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where DY denotes the fractional derivative operator. In contrastivetives of integer order
depend solely on the local behavior. Beforehand, two pomlgorithms for computing{4)
were evaluated. The first algorithm is based on generalizat filifferences and is mostly
referred to by the names of Griinwald and Letnikov in literat(see e.g. Gorenfldl[7] for a
description). Luise Blank published a collocation appnaiion with polynomial splines [6],
which we used as second algorithm. With the latter algorjtvewere able to achieve a rela-
tive error of less than 0.1 % after 10 cm of propagation (spoads to seventy wavelengths).
For demonstration, we investigated a bone sample of theskhe- 1 ¢m with a propagation
velocity of ¢, = 32007:. Now, the frequency dependent damping of bone with paramete
ap = 1.6633 - 10~% and frequency power factgr= 1.1 is taken into account. For water we
use thermoviscous damping with the valugs= 6.1 - 10716 andy = 2.

In Fig.[ the analytical solution (analyt.) is compared vitile solutions retrieved from two
FE-simulations, where thermoviscous dampingo{ w?) and fractional dampinga( o< w¥)
was applied to the sample region. In the thermoviscous tasearametety, was adapted so
that the value of the damping coefficienequals the one of the fractional damping model for
a frequency of 1 MHz. Absolute value and phase of the cooedtinction utilizing thermo-
viscous damping stay close to the analytical solution, tvloen be explained with the similar
frequency dependence of damping in the sample and refesimoéation. For the fractional
damping model the curves differ greatly. We conclude from that the frequency depen-
dence of damping has an influence on the shape of the corrdatation, so for accurate
results the correct damping behavior has to be considered.

PERFECTLY MATCHED LAYERS

One of the great challenges for each volume discretizatberae is the precise modeling of
free radiation problems. The crucial point for these corapors is, that the numerical scheme
avoids any reflections at the computational boundarieschieae this requirement, we have
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Figure 1: Comparison of the thermoviscous and fractionadgiag model for bone material.
D, and D,, represent the complex diffraction correction functionstfee sample D;) and
water (D).

developed an enhanced PML (Perfectly Matched Layer) methbidh allows computational
domains being a fraction of the acoustic wavelength.

We start at the mass as well as momentum conservation eqsi&tiolinear acoustics, which
read as follows

op’
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In @) and [B)p’ denotes the acoustic presswéthe particle velocityp, the mean density of
the fluid andc the speed of sound. According id [4] we apply a splitting &f éitoustic pres-
surep’ into p,, p, andp’. Therewith, the mass as well as momentum conservationiequat
for linear acoustics change to
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In the above equations,, o, and o, are damping functions, which are zero within the
acoustic propagation domain and which are different fromo zeithin the PML-layer en-
closing the acoustic propagation domain. We will inveségdamping functions, which are
constant all over the PML-layer, which increase quadrliyies well as inverse with the dis-
tance.

Applying a Fourier-transformation t@l(7)[Z1(9), we arrivetia¢ following Helmholtz equation
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with k the acoustic wave number.
In order to evaluate the PML-method, we perform a computatiba 2D example, as dis-
played in Fig[R. This example, where we apply an acoustid &dhe center, has an analytic

PML-layer
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Figure 2: Setup of computational domain

solution according to the Hankel function. Table 1 contdivestotal Ly-error as well as the
relative error at the corner of the propagation region. m[Biwe show the contour lines of the

Table 1: Error evaluation for different damping functions
‘ PML const. PML quadDist PML inverseDist

L2-error 0.001613 0.001351 0.001193
rel. Error (\/5,0/5) | 0.22% 0.135% 0.11%

acoustic pressure inside the propagation as well as PMbwreamnd in Figl we display the
relative error as a contour plot. It has to be noticed, thatthnkel function has a singularity
at (0,0) and, therefore, the comparison between analytical and ricahsolution makes no
sense near this point.

NON-MATCHING GRIDS

In this section, we face a common problem within computati@coustics, namely that the
computational grid in one subdomain can be considerablygseo#han in the another subdo-
main. In order to keep as much flexibility as possible, we ngependently generated grids
which are well suited for approximating the solution of degled local subproblems in each
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Figure 3: Contour lines of acoustic pressure in-
side propagation region and PML-region

Figure 4: Contour plot of the relative error

subdomain. Therefore, we have to deal with the situatiorontonforming grids appearing at
the common interface of two subdomains. Special care has taken in order to define and
implement the appropriate discrete coupling operatorghwvisi published with more detail in
[10]. Here, we will briefly deal with the interface conditiaf the acoustic-acoustic interface
and then show results.

For this type of coupled problem, we can use the well-testati veell-studied framework

of mortar methods[]5]. Both subdomaif®, and Q; are occupied by an acoustic fluid.
Thus, in each subdomain we have to solve the wave equatiothéoacoustic pressures
P Qi x(0,T) = IR,

1 .
S = Api=fi, in Qx(0,T),i=12 (13)
C

completed by appropriate initial conditions at tihe= 0 and boundary conditions on the
global boundany".
For simplicity, we use the same equation and primal variableoth subdomains, and the
interface is just artificial, i.e., no material change oscWe refer tol[B[19] for the treatment
of more general situations. Therefore, in the strong sgtiins natural to impose continuity
in the trace and flux of the acoustic pressure, along the cominterfacel'y, i.e.,
P} = phan n - on onI'y.

The flux coupling condition will be enforced in a strong sebgédntroducing the Lagrange
multiplier

N

on on’

whereas the continuity in the trace will be understood in aknsense as

/F (P} — ph)p AT =0, (15)
I

(14)



for all test functionsy, out of a suitable Lagrange multiplier space. We note thatreeco
functional framework is presented in [3].

As test example, we choose the dom@in= (—0.05,0.05) m? and decompose it int@; =
(—0.0125,0.0125) m? and€, = Q \ Q1. A point source is located 46, 0) and realized as a
Dirichlet node dictating the solution to be

u(0,0,t) = sin(27 ft),

with a frequencyf = 1000 Hz. As medium, we choose air, i.e.= 343m/s. We use a time
step sizeAt = 10us. Figure[b shows the initial grid and two zooms towards therface

Figure 5: Initial grid, two zooms into the computationaldgri

of the actual computational grid, which was obtained by amifly refining the grid ort);

six times and the one ofl, three times. Thus, on the lower interface side, we have a com-
pletely nonconforming situation, whereas on the otherssittes inner interface grid is a pure
refinement of the outer one, with a mesh size ratigh, = 1/8. In Fig.[d, the isolines of
the solutions for two settings after 28 time steps at 280us are plotted. For the left plot,

Figure 6: Acoustic pressure contour lines at time 280us, Lagrange multipliers defined
with respect to the fine side (left) and to the coarse sidétig

the discrete Lagrange multiplier space was chosen wittemtdp the fine grid o2, for the
right one, it is defined on the coarse grid@$. There is no qualitative and no noteworthy
quantitative difference between both solutions. Thustl example, the choice of the grid
for the Lagrange multiplier space does not influence the migalesolution. More important,



both solutions are well behaved near the interface and ifeciaftreflections occur despite
the very large difference in the mesh sizgsandhs.

CONCLUSIONS

In this paper we first addressed some problems within cortipng acoustics when do-
ing finite element calculations. These are frequency dep@ndiscretization errors as well
as damping of the propagation medium. Futhreon, we presénteschemes, which are per-
fectly matched layers and non-matching grids. When peiifagroalculations in the frequency
domain, perfectly matched layers allow the ideal absonpticacoustic energy at the border of
the computational domain. Therewith, they are useful ferttkatment of open domain prob-
lems. Non-matching grids enhance the efficieny and accuhéipite element calculations
which ask for different mesh sizing in different subdomains
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