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Abstract
The purpose of the study is demonstration of possibility of boundary conditions identification
in under-determined problem. The problem is understood as determining four constants nec-
essary for description of the functions of forced vibration amplitudes, from three equations.
For this the Singular Value Decomposition (SVD) algorithm is used.
After estimation the function of forced vibration amplitudes, support elasticitiescoefficients
can be calculated from the equations describing the boundary conditions.
Verification of the obtained mathematical model (elastically supported Bernoulli-Euler’s
beam) was done by: comparing natural frequencies obtained from the analytical and numeri-
cal model, and analysis the correlation between the vibration amplitude vectors.

INTRODUCTION

Analysis of the dynamic processes of real objects can be expensive, time-consuming and in
certain cases impossible, whereas experiments can be easily carried out on models, which can
be used to simulate dynamic response. For this purpose a physical and mathematical model of
the object should be built followed by estimation of model parameters and modelverification.
This process is called identification of mechanical systems.

Here the analysed system is a beam, described by Bernoulli-Euler’s modelwith un-
known boundary conditions, modelled by elastic supports. Mathematical model of the bound-
ary conditions is described by equations binding respectively the bendingmoment and angle
of rotation and lateral force and amplitude of vibrations in cross sections, inwhich the beam
is supported.
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In order to determine the support elasticities an inverse model of the beam has been
created. In the paper the inverse model is understood as determining the functions of ampli-
tudes of forced vibration based on the measurements of amplitudes in several points, and then,
support elasticities can be calculated from the equations describing the boundary conditions.

The function of the vibration amplitudes caused by a given force, is described by the
equation containing four sought constants. The simplest method of finding the constants is
to measure the amplitudes of the vibrations caused by the force of known amplitude and
frequency in four points. In order to minimize measuring errors the measurements can be
taken in larger number of points and then one of the statistical methods e.g. regression analysis
can be used. The biggest problem is encountered when the available number of measurement
values is lower than the number of constants to be determined. (so-called under-determined
problem [4]). In these cases four constants from three equations canbe determined by using
decomposition of the main matrix by Singular Value Decomposition (SVD) algorithm [3].

Decomposition by SVD algorithm is also used for determining the inverse models of
over-determined systems (with excess information about the system) e.g. in order to find the
power of acoustic wave sources [2, 5, 6].

INVERSE MODEL OF THE BEAM

Model of the beam on elastic supports is shown in Fig. 1.

Figure 1: The beam with general boundary conditions

The differential equation of beam vibration has a form:

EI ·
∂4y(x, t)

∂x4
+ ρA ·

∂2y(x, t)

∂t2
= F · δ(x, xf ) · eiωwt (1)

Equation (1) can be solving by separating the variables i.e.:y(x, t) = X(x) · T (t). In
steady-state, the ,,time” equation may be expressed as:T (t) = 1 · eiωwt

In this case the differential equation of ,,space” variable take the form:

X(4)(x) − λ4 · X(x) = F/EI · δ(x, xf ) (2)

where:λ4 = ω2
w · ρA/EI,

and its solution is function (3):
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X(x) = P cosh λx + Q sinhλx + R cos λx + S sinλx + (3)

+
F

2 · EI · λ3
·

[

sinhλ(x − xf ) − sinλ(x − xf )

]

· H(x, xf )

where:EI - bending stiffness,A cross-section area,ρ - material density,δ(x, xf ) -
Dirac delta function andH(x, xf ) is Heaviside step function atx = xf .

The relation (3) describes the function of amplitudes of steady-state vibrations caused
by force with amplitudeF and frequencyωw, applied in the pointx = xf , constants
P, Q, R, S can be determine based on the measurement of vibration amplitudes in several
points of the beam. The description of the procedure for determining the constants is shortly
described in the next section of the paper.

After estimating the integration constants, sought values of support elasticitycoeffi-
cients can be calculated from the boundary conditions, and for positionx = 0:

EI · X ′′′(0) = −kT0X(0) −EI · X ′′(0) = −kR0X
′(0) (4)

hence, the lateral and rotational elastic coefficient can be obtained fromrelations:

kT0 = EI · λ3 ·
S − Q

P + R
kR0 = EI · λ ·

P − R

Q + S
(5)

The boundary conditions for positionx = l are described by:

EI · X ′′′(l) = kT l · X(l) EI · X ′′(l) = −kRl · X
′(l) (6)

hence, the lateral elastic coefficient is:

kT l = EIλ3 P sinhλl + Q cosh λl − R sinλl − S cos λl − f1

P cosh λl + Q sinhλl + R cos λl + S sinλl − f2
(7)

where:

f1 =
F

2EIλ3
[coshλ(l − xf ) + cos λ(l − xf )]

f2 =
F

2EIλ3
[sinhλ(l − xf ) − sinλ(l − xf )]

and the rotational elastic coefficient:

kRl = −EIλ
P cosh λl + Q sinhλl − R cos λl − S sin λl − f3

P sinhλl + Q cosh λl − R sinλl + S cos λl − f4
(8)

where:

f3 =
F

2EIλ2
[sinhλ(l − xf ) + sinλ(l − xf )]

f4 =
F

2EIλ2
[coshλ(l − xf ) − cos λ(l − xf )]
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The model has been developed with the assumption that the values of support elastici-
ties are constant, i.e. they do not depend on the amplitude or vibration frequency.

THE METHOD OF DETERMINING THE INTEGRATION CONSTANTS

The simplest method of finding the constantsP, Q, R, S is to measure the vibration ampli-
tudes caused by the force of known amplitude and frequency in four points. In this case four
constants can be determine from four equations in the form (3) describingthe vibration am-
plitudes in four measuring points.

In many cases of diagnostics or identification, it is not possible to obtain full informa-
tion on the analysed object. In the case analysed here the ,,incomplete information” is to be
understood that the measurement of the vibration amplitudes was taken only in three measur-
ing points.

Assuming that the measuring points are the points with coordinatesx = a, x = b and
x = c, (values of the forced vibration amplitudes in these points are marked respectively as
X(a), X(b), X(c)) we obtain three algebraic equations in the form (3), which can be written
in the matrix form:M · C = B

hence:











cosh λa sinhλa cos λa sinλa

cosh λb sinhλb cos λb sinλb

cosh λc sinhλc cos λc sinλc



















P

Q

R

S









=





b1

b2

b3



 (9)

where:

b1 = X(a) −
F

2EIλ3
[sinhλ(a − xf ) − sinλ(a − xf )] · H(a, xf )

b2 = X(b) −
F

2EIλ3
[sinhλ(b − xf ) − sinλ(b − xf )] · H(b, xf )

b3 = X(c) −
F

2EIλ3
[sinhλ(c − xf ) − sinλ(c − xf )] · H(c, xf )

The equation (9) is a matrix equation, for which the solution can be obtained byde-
composing the main matrix according to Singular Value Decomposition algorithm [3]:

M = U · W · VT

where:

U - a square matrix of order 3 x 3 having 3 orthogonal columns such, that:UT U = 1,

W - pseudo-diagonal matrix of order 3 x 4 having non-negative singular values on its
diagonal,
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V - a square matrix of order 4 x 4 having 4 orthogonal columns, such, that:VT V = 1,

So sought constant vector can be determined based on matrix obtained as result of
decomposition:

C = V · W−1 · UT · B

After computing the integration constantsP, Q, R, S, the sought values of the support
elasticities can be calculated from the relation (5), (7) and (8).

COMPARATIVE CRITERIA OF THE MODELS

Verification of the model created based on the data obtained from the experiment is one of the
main problems of the identification. The model obtained from identification of the system with
,,incomplete information” (under-determined problem) is an approximation of the real system.
The verification stage of identification involves checking of the obtained approximation for
sufficiency for the objective, for which the model was created.

The identification objective adopted in the paper is determining the amplitude vectors
of steady state vibrations caused by force of any frequency below the second eigenfrequency.

The first basic criterion of comparison of the models of mechanical construction is
comparison of their natural frequency. Due to limitations of excitation frequency, the values
of two first free vibration frequencies will be compared here.

The second used criterion of analysing the correlation between the models isvisual
comparison of amplitude vectors of vibrations caused by forces of different excitation fre-
quencies. Mathematical notation of this type of comparison (described and used in modal
analysis for finding the correlation between the eigenvectors) is done using MAC (Modal
Assurance Criterion) [1] coefficient:

MAC(x, y) =

∣

∣

∣
x∗TWgy

∣

∣

∣

2

(y∗TWgy) · (x∗TWgx)

where:x∗,x andy∗,y are two vectors of the forced vibration amplitudes obtained from
the analytical and experimental model;Wg is a weight matrix indicating, which coordinates
of the vector are the most important during comparison. The analysis was performed with the
assumption that matrixWg is a unit matrix.

NUMERICAL EXAMPLES

The subject of the analysis is elastically supported beam shown in Fig.1 with the following
material data: Young modulusE = 2.1 · 1011Pa; material densityρ = 7860kg/m3 and geo-
metric data: cross-sectionbxh=0.03x0.03m; beam lengthl = 1.3m.
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The ,,experimental” data required for identification and verification come fromthe vi-
bration analysis using the finite element method. For this purpose amplitudes were computed
for vibrations excited by force of amplitudeF = 100N applied to the beam in point with a
coordinatexf = 0.9m and frequencyω = 2πf (for different frequenciesf ).

The support elasticity constants were determine based on the measurement (obtained
from FEM analysis) of the vibration amplitudes of in three points, whereas twoof them are
located at the beam ends (a = 0, c = l). After determining the elasticity coefficients, using
decomposition of the main matrix according to Singular Value Decomposition algorithm, the
analytical model was verified against the criteria specified above.

Free vibration frequencies were compared by determining the deviation defined by the
following formula:

δi =
|ωie − ωia|

ωie

· 100% i = 1, 2 (10)

where:

ωie - i-th natural frequency obtained from the experimental model,

ωia - i-th natural frequency obtained from the analytical model,

Fig. 2 shows the defined above deviation of determining the first and second natural
frequency as a function of location of the third measurement point (other two points at the
beam ends) for the excitation frequencyω = 2π · 25 = 157.1 rad/sec.
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Figure 2: Deviation of determining of the first two natural frequencies as afunction of location
of the third sensor.

Natural frequencies from FEM analysis:ω1 = 262.1rad/sec andω2 = 1039.4rad/sec.
Fig. 3 shows the defined above deviation of determining the first and second natural

frequency as a function of location of the third measurement point for the excitation frequency
ω = 2π · 50 = 314.2 rad/sec (higher than the first eigenfrequency).

According to the analysis of the results shown in Figs.2 and 3 smaller identification
errors are made when system is loaded by a frequency lower than the first frequency of system
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Figure 3: Deviation of determining of the first two natural frequencies as afunction of location
of the third sensor.

free vibration. In such case location of the central sensor (other two are located on the beam
ends) has no significant effect on uncertainty of the determining of two first eigenfrequencies
(deviationsδ1 andδ2 below 5%).

In the case of identification with excitation by force of a frequency higher than first
natural frequency it is essential (due to identification error) to find ,,appropriate” position of
the measuring element (frequency determining deviation varies from 0 to 33%).

Later on we will determine the correlation coefficients for the vectors of amplitudes of
forced vibration obtained from the experimentXe and analytical modelXa:

MAC(Xa,Xe) =

∣

∣

∣
XT

a · Xe

∣

∣

∣

2

(XT
a · Xa) · (XT

e · Xe)

Table 1 summarizes theMAC coefficients computed by comparison of forced vibra-
tion vectors, obtained for 7 different frequencies of exciting force. The boundary conditions
necessary to calculated the vectors of vibrations from the analytical modelare obtained from
the identification measurements with a excitation frequencyω = 2π · 25 = 157.1rad/sec and
ω = 2π · 50 = 314.2rad/sec.

Table 1: Correlation coefficientsMAC for vibration amplitude vectors obtained from the
analytical and experimental model

Identification Verification forω = 2π · f

with ω = 2π · f f = 10 f = 25 f = 50 f = 75 f = 100 f = 125 f = 150

f = 25Hz 0.9983 0.9982 0.9975 0.9989 0.9930 0.9965 0.9953
f = 50Hz 0.9998 0.9997 0.9976 0.9992 0.9992 0.9907 0.9811

Identification and verification measurements were performed for the case,where the
central measuring point was in the beam center (b = l/2).

Verification results for the analytical model indicate correct identification ofthe bound-
ary conditions of the beam, at least in the assumed band of excitation frequency.
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CONCLUSIONS

The purpose of the study was demonstration of possibility of beam boundary conditions iden-
tification in under-determined problem. In the analysed case the problem is to be understood
as determining four constants necessary for description of the functionsof forced vibra-
tion amplitudes, from three equations. These equations described amplitudesof vibrations
in points, where measuring elements (sensors) were located.

Verification of the obtained mathematical model (elastically supported Bernoulli-
Euler’s beam) was done by: comparing natural frequencies obtained from the analytical model
and numerical experiment, and analysing the correlation of forced vibration amplitude vectors
for different excitation frequencies.

The deviation of determining the first and second free vibration frequency was com-
puted as a function of location of one measuring element. Identification of boundary condi-
tions was done for two frequencies of exciting force: below and above the first eigenfrequency.

According to the results of the analysis shown on Figs.2 and 3, smaller identification
errors are made when system is loaded by a frequency lower than the first eigenfrequency.
However, it is essential to find such position of the measuring element, which will ensure
minimal identification error.

Another criterion used in the analysis for studying the correlation between the models
(described and used in modal analysis for finding the correlation betweeneigenvectors) is
MAC (Modal Assurance Criterion) coefficient.MAC coefficients for the vectors of forced
vibration obtained from the experiment and analytical model are summarized intable 1. All
MAC coefficients are greater than 0.8, above which, good coincidence of vectors is assumed.

This work was done as a part of research project 4 T07C 008 30
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