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Abstract

The purpose of the study is demonstration of possibility of boundary condititentification
in under-determined problem. The problem is understood as determiningdonstants nec-
essary for description of the functions of forced vibration amplitudesn finree equations.
For this the Singular Value Decomposition (SVD) algorithm is used.

After estimation the function of forced vibration amplitudes, support elasticitiefficients
can be calculated from the equations describing the boundary conditions.

Verification of the obtained mathematical model (elastically supported Berricuilir's
beam) was done by: comparing natural frequencies obtained from &éhgieal and numeri-
cal model, and analysis the correlation between the vibration amplitude vectors

INTRODUCTION

Analysis of the dynamic processes of real objects can be expensivecdimseming and in
certain cases impossible, whereas experiments can be easily carriedhoodels, which can
be used to simulate dynamic response. For this purpose a physical andraiathémodel of
the object should be built followed by estimation of model parameters and mexdfetation.
This process is called identification of mechanical systems.

Here the analysed system is a beam, described by Bernoulli-Euler's mvitielin-
known boundary conditions, modelled by elastic supports. Mathematicall micitie bound-
ary conditions is described by equations binding respectively the bentngent and angle
of rotation and lateral force and amplitude of vibrations in cross sectiomnghich the beam
is supported.
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In order to determine the support elasticities an inverse model of the beaiveka
created. In the paper the inverse model is understood as determiningttierfis of ampli-
tudes of forced vibration based on the measurements of amplitudes inl g@mets, and then,
support elasticities can be calculated from the equations describing thddgiconditions.

The function of the vibration amplitudes caused by a given force, is itbescby the
equation containing four sought constants. The simplest method of findéngotistants is
to measure the amplitudes of the vibrations caused by the force of known ateptind
frequency in four points. In order to minimize measuring errors the measunts can be
taken in larger number of points and then one of the statistical methods eagsieq analysis
can be used. The biggest problem is encountered when the availablemoinnteasurement
values is lower than the number of constants to be determined. (so-calleddetdrmined
problem [4]). In these cases four constants from three equationsecdatermined by using
decomposition of the main matrix by Singular Value Decomposition (SVD) algori#jm [

Decomposition by SVD algorithm is also used for determining the inverse mofiels o
over-determined systems (with excess information about the system) e.deintofind the
power of acoustic wave sources [2, 5, 6].

INVERSE MODEL OF THE BEAM

Model of the beam on elastic supports is shown in Fig. 1.
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Figure 1: The beam with general boundary conditions

The differential equation of beam vibration has a form:

y(x, 1) PPy(x, 1) 4
1) a:AS AA A2 g . wwl 1
Oxt +p o2 6(z,xf) e (1)
Equation/(1) can be solving by separating the variablesii(e.:t) = X (z) - T'(¢). In
steady-state, the ,,time” equation may be expressef(@s:= 1 - ¢™“w?
In this case the differential equation of ,,space” variable take the form:

XW(z) =\t X (x) = F/EI - §(x,xy) 2)

where:\* = w2 - pA/FEI,
and its solution is function (3):
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X(x) = PcoshAr+ @sinh Az + Rcos Az + Ssin Az + (3)
F
+ TR G sinh ANz —xf) —sin ANz —ay)| - H(x,x5)

where: ET - bending stiffnessA cross-section area, - material density§(x, z5) -
Dirac delta function and{ (z, z ) is Heaviside step function at= z .

The relation|(3) describes the function of amplitudes of steady-state vibsataised
by force with amplitudel” and frequencyw,,, applied in the pointe = z;, constants
P,Q,R,S can be determine based on the measurement of vibration amplitudes in several
points of the beam. The description of the procedure for determining tretasun is shortly
described in the next section of the paper.

After estimating the integration constants, sought values of support elasteffi-
cients can be calculated from the boundary conditions, and for pogition:

EI-X"(0) = —kroX(0) —EI-X"(0) = —kpoX'(0) (4)
hence, the lateral and rotational elastic coefficient can be obtaineddlations:

S—-Q P—R
. kpo=FEI-\- —— 5
P+ R Ro Q+8S ®)

The boundary conditions for positian= [ are described by:

kro = ET-)\3-

EI-X"(1) = kp - X(1) EI-X"(l) = =k - X'(]) (6)

hence, the lateral elastic coefficient is:

I3Psmh)\l+Qcosh)\l Rsin Al — Scos A\l — fi

kr; = EIA 7
i P cosh Al + @ sinh Al + Rcos Al + Ssin A\l — fo 0
where:
fi = sresleosh A~ ) + cos Al - )]
1 = QEI)\S COS .If COS I‘f
F
fo = SEDS [sinh A(l — 2 ¢) —sin A(I — x¢)]
and the rotational elastic coefficient:
Pcosh Al + Qsinh Al — Rcos Al — S'sin Al — f3
kri = —FEI\ 8
Rl Psinh Nl + Qcosh Al — Rsin Nl + Scos A — f4 ®
where:
F
fz = B2 [sinh A(l — 2 ¢) +sin A(l — x¢)]
F
fa = [cosh A(I — x¢) — cos A(l — z¢)]

2EIN?
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The model has been developed with the assumption that the values oftselpstci-
ties are constant, i.e. they do not depend on the amplitude or vibration fregue

THE METHOD OF DETERMINING THE INTEGRATION CONSTANTS

The simplest method of finding the constams)), R, .S is to measure the vibration ampli-
tudes caused by the force of known amplitude and frequency in foutspdinthis case four
constants can be determine from four equations in the form (3) descthengbration am-
plitudes in four measuring points.

In many cases of diagnostics or identification, it is not possible to obtain folinra-
tion on the analysed object. In the case analysed here the ,,incomplete infornstio be
understood that the measurement of the vibration amplitudes was taken organrtbasur-
ing points.

Assuming that the measuring points are the points with coordinates,, + = b and
x = ¢, (values of the forced vibration amplitudes in these points are markedctashe as
X(a), X (b), X(c)) we obtain three algebraic equations in the farm (3), which can be written
in the matrix formM - C = B

hence:
coshAa sinhAa cosAa sinla j2) ;
1
cosh A\b sinh Ab cosAb sin Ab g = |: ba ] 9
bs
cosh Ac¢ sinh Ac cosAc sinAc S
where:
by = X(a) — m[smh)\(a —xy) —sinAa —xy)] - H(a,zy)
F .
by = X (b) — m[smh)\(b —xf) —sin AN(b—xy)| - H(b,x¢)
by = X(c) — SEL [sinh A(c —x¢) —sin A(¢c — xy)] - H(c,zy)

The equation (9) is a matrix equation, for which the solution can be obtaineid-by
composing the main matrix according to Singular Value Decomposition algorithm [3]

M=U W.VT
where:

U - a square matrix of order 3 x 3 having 3 orthogonal columns such,Hats = 1,

W - pseudo-diagonal matrix of order 3 x 4 having non-negative singalaieg on its
diagonal,
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V - a square matrix of order 4 x 4 having 4 orthogonal columns, such WHa¥/ = 1,

So sought constant vector can be determined based on matrix obtainesutisof
decomposition:

c=v-w'l.u’.B

After computing the integration constaritsQ, R, S, the sought values of the support
elasticities can be calculated from the relation (5), (7) and (8).

COMPARATIVE CRITERIA OF THE MODELS

Verification of the model created based on the data obtained from thdregpeis one of the
main problems of the identification. The model obtained from identification ofytbtes with
,,incomplete information” (under-determined problem) is an approximation ogtisystem.
The verification stage of identification involves checking of the obtainedoappation for
sufficiency for the objective, for which the model was created.

The identification objective adopted in the paper is determining the amplitudesecto
of steady state vibrations caused by force of any frequency belovetomd eigenfrequency.

The first basic criterion of comparison of the models of mechanical catgtnuis
comparison of their natural frequency. Due to limitations of excitation frequehe values
of two first free vibration frequencies will be compared here.

The second used criterion of analysing the correlation between the modedsias
comparison of amplitude vectors of vibrations caused by forces of diffezxcitation fre-
guencies. Mathematical notation of this type of comparison (described sawlin modal
analysis for finding the correlation between the eigenvectors) is dong dgihC' (Modal
Assurance Criterion) [1] coefficient:

MAC(z,y) =

(" Wey) - (x*Wgx)

wherex*, x andy*, y are two vectors of the forced vibration amplitudes obtained from
the analytical and experimental mod® is a weight matrix indicating, which coordinates
of the vector are the most important during comparison. The analysis wasmed with the
assumption that matri¥V is a unit matrix.

NUMERICAL EXAMPLES

The subject of the analysis is elastically supported beam shown in Fig.1 witfoltbwing
material data: Young modulu8 = 2.1 - 10!!Pa; material density = 7860kg/m? and geo-
metric data: cross-sectidnr=0.03x0.03m; beam length= 1.3m.
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The ,,experimental” data required for identification and verification come fhanvi-
bration analysis using the finite element method. For this purpose amplitudeseveputed
for vibrations excited by force of amplitude = 100N applied to the beam in point with a
coordinater ; = 0.9m and frequency = 2 f (for different frequencieg).

The support elasticity constants were determine based on the measurebiaimed
from FEM analysis) of the vibration amplitudes of in three points, whereaofwioem are
located at the beam ends € 0, ¢ = [). After determining the elasticity coefficients, using
decomposition of the main matrix according to Singular Value Decomposition algmfiltie
analytical model was verified against the criteria specified above.

Free vibration frequencies were compared by determining the deviatioveddfy the
following formula:

_ ‘wie - wia‘

5; - 100% i=1,2 (10)

Wie
where:
w;e - i-th natural frequency obtained from the experimental model,

w;q - 3-th natural frequency obtained from the analytical model,

Fig./2 shows the defined above deviation of determining the first and dewinral
frequency as a function of location of the third measurement point (othepbints at the
beam ends) for the excitation frequengy= 27 - 25 = 157.1 rad/sec.

0 0‘2 0‘4 O‘G 0‘8 ‘1 112 0 0.‘2 0‘4 0.6 0‘8 ‘1 1‘2
(a) the first natural frequency (b) the second natural frequency

Figure 2: Deviation of determining of the first two natural frequenciesfascion of location
of the third sensor.

Natural frequencies from FEM analysis; = 262.1rad/sec and, = 1039.4rad/sec.

Fig./3 shows the defined above deviation of determining the first and dewioral
frequency as a function of location of the third measurement point foxitieagion frequency
w = 27 - 50 = 314.2 rad/sec (higher than the first eigenfrequency).

According to the analysis of the results shown in Figs.2/and 3 smaller idetitifica
errors are made when system is loaded by a frequency lower than thieefitgency of system
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(a) the first natural frequency (b) the second natural frequency

Figure 3: Deviation of determining of the first two natural frequenciesfascion of location
of the third sensor.

free vibration. In such case location of the central sensor (other imaated on the beam
ends) has no significant effect on uncertainty of the determining of tsdiigenfrequencies
(deviationsy; andd. below 5%).

In the case of identification with excitation by force of a frequency highan tlirst
natural frequency it is essential (due to identification error) to find ,@pm@te” position of
the measuring element (frequency determining deviation varies from 0 tp. 33%

Later on we will determine the correlation coefficients for the vectors of antig#tof
forced vibration obtained from the experiméft and analytical modeX,:

2
‘XaT X,
(X3 - Xa) - (XTI - Xe)
Table 1 summarizes thel AC coefficients computed by comparison of forced vibra-
tion vectors, obtained for 7 different frequencies of exciting fordee Boundary conditions
necessary to calculated the vectors of vibrations from the analytical rmoelebtained from

the identification measurements with a excitation frequeney 2= - 25 = 157.1rad/sec and
w = 27 - 50 = 314.2rad/sec.

MAC(Xq,X,) =

Table 1: Correlation coefficientd/ AC' for vibration amplitude vectors obtained from the
analytical and experimental model

Identification Verification forw = 27 - f
withw=2r-f| f=10| f=25| f=50| f=75| f=100 | f=125| f =150
f =25Hz 0.9983| 0.9982| 0.9975| 0.9989| 0.9930 | 0.9965 | 0.9953
f = 50Hz 0.9998| 0.9997| 0.9976| 0.9992| 0.9992 | 0.9907 | 0.9811

Identification and verification measurements were performed for the whsee the
central measuring point was in the beam certiet (/2).

Verification results for the analytical model indicate correct identificatidh@bound-
ary conditions of the beam, at least in the assumed band of excitation figque
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CONCLUSIONS

The purpose of the study was demonstration of possibility of beam bogiodaditions iden-
tification in under-determined problem. In the analysed case the problemeésuoderstood
as determining four constants necessary for description of the funatfofeaced vibra-
tion amplitudes, from three equations. These equations described amplifudiésations
in points, where measuring elements (sensors) were located.

Verification of the obtained mathematical model (elastically supported Bernoulli-
Euler's beam) was done by: comparing natural frequencies obtam@diie analytical model
and numerical experiment, and analysing the correlation of forced vihratiplitude vectors
for different excitation frequencies.

The deviation of determining the first and second free vibration frequesas com-
puted as a function of location of one measuring element. Identification afdaou condi-
tions was done for two frequencies of exciting force: below and ab@/&rgt eigenfrequency.

According to the results of the analysis shown on Figs.2 and 3, smaller idefitfi
errors are made when system is loaded by a frequency lower than theidieafrequency.
However, it is essential to find such position of the measuring element, whicknsure
minimal identification error.

Another criterion used in the analysis for studying the correlation betweemdtdels
(described and used in modal analysis for finding the correlation beteigenvectors) is
M AC (Modal Assurance Criterion) coefficient/ AC' coefficients for the vectors of forced
vibration obtained from the experiment and analytical model are summarizatlenl. All
M AC coefficients are greater than 0.8, above which, good coincidencetofrses assumed.

This work was done as a part of research project 4 TO7C 008 30
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