
 

 
 

 

Eds.: M. S. Tsai, C. T. Huang, and C. H. Chang 

ANALYSIS OF A HYBRID CONTROL ALGORITHM FOR 

DISTURBANCE REJECTION AND ITS APPLICATION ON 

AN ACTIVE ISOLATION SYSTEM  

Meng-Shiun Tsai
1
, Ching-Tang Huang

2
, Chi-Hao Chang

1 

1
Department of Mechanical Engineering, National Chung-Cheng University,  

168, University Rd., Ming-Hsiung Chia-Yi, Taiwan 
2
Department of Mechanical Engineering, National Taiwan University 

No.1, Sec. 4, Roosevelt Road, Taipei, Taiwan 
imetsai@ccu.edu.tw  

Abstract 
In this paper, hybrid control architecture is proposed which integrates FX-LMS 

(Filtered-x Least Mean Square) adaptive feedforward control with FSCF-LQG (Frequency 

Shaping Cost Functional Linear Quadratic Gaussian) feedback control into one design. Since 

one of the major disadvantages of the adaptive feedforward controllers is its poor transient 

response due to their long learning process, the transient performance can be significantly 

improved with the proposed hybrid control. Root locus technique is applied to provide more 

physical interpretation. Analytical results demonstrate that the proposed method can achieve 

better transient and steady state responses as compared to single feedforward or feedback 

design. It is found that the FSCF-LQG controller with the FX-LMS algorithm should be 

designed simultaneously to achieve better performance. Finally, the hybrid control is applied to 

an active-passive isolation system with white noise disturbance input.   

INTRODUCTION 

For the semiconductor manufacturing and high precision systems, vibrations 

caused by ground disturbances might affect their performance significantly. To reduce 

unwanted vibration effect, passive, active or active-passive isolation systems have 

been developed to protect high-precision equipments from external disturbances [1, 2].  

Passive systems have the advantages of low cost, easy maintenance, and high stability. 

Active controls normally can achieve better performance than passive systems, but it 

might results in instability if there is high uncertainty payload. To overcome this 

problem, active-passive systems have been developed to obtain both advantages of the 

passive and active systems Beard[1994] where the active layer consists of piezoelectric 

actuators and a middle mass, and the passive is consists of elastomer and an upper mass. 
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The active layer is responsible for low frequency isolation, and the passive layer can 

provide high attenuation around high frequencies.  

There were many control techniques proposed for vibration isolation systems such 

as classical control [1, 3], adaptive control [4], optimal LQG control [2], and neural 

network [5].  The optimal control can provide a systematic approach for designing 

controller, but the uncertainties issues are not well addressed with this approach.  

Adaptive control can be adapted to the changes of the system dynamics. However, the 

transient response of the control can be a significant problem to this approach. In this 

paper, we propose a hybrid control technique which integrates FX-LMS (Filtered-x 

Least Mean Square) adaptive feedforward control with FSCF-LQG (Frequency 

Shaping Cost Functional Linear Quadratic Gaussian) feedback into one design.  It will 

be shown that that the hybrid controls can provide better performance as compared to 

the individual FSCF-LQG and FX-LMS. Parameter design guidelines will be provided 

for the hybrid control technique.  

 

       FREQUENCY SHAPING COST FUNCTIONALS LQG CONTROL  

 
   For the purpose of illustration of the fundamental concepts using hybrid control, a 

simple active vibration isolation system shown in Fig. 1 is used as a working example. 

The system dynamics is given as: 
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Equation (1) can be transformed into a state space model given as the following: 
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where x are the states, u is the control input , d is the disturbance, ym is the sensor output 

which is equal to px& , and θ is the sensor noise. If one is interested in controlling a 

particular frequency band, the output ym can be weighted by a frequency function given 

as:  

px&  

ground 

disturbance 

d  
k

cF

Platform m 

 

c

Figure 1 The active vibration isolation system 
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By transforming Eq. (2) into a state space form which is given as:  
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By combining Eq. (2) and (3), the augmented plant is formed as: 
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The frequency shaping cost functional LQG control is to find the optimal gain K and 

observer gain L such that the following cost function is minimized: 

dt)Ruuyy(J
T

f
0

T

f += ∫
∞

      (6) 

Here R is the weighting function on the control input. By solving the two Riccati 

equations, one can obtain the optimal gain K and observer gain L [6]. The observations 

on the weighting function F(s) is that the smaller ξF, the deeper attenuation on the 

selected frequency. Also, the smaller R, the wider band of the disturbance the controller 

will achieve.   

 

ADAPTIVE FEEDFORWARD FILTERED-X LMS CONTROL 
 

In this section, the FX-LMS control algorithm is introduced. The FX-LMS 

algorithm can be adaptive to environmental changes and thus is more robust than the 

conventional feedforward controller [7]. However, the transient performance of the 

FX-LMS is strongly dependent on the convergence rate of the control parameters and 

the filtered-x signal. To achieve high disturbance rejection on both transient and steady 

states, more analysis should be performed to investigate the behaviour of the FX-LMS 

algorithm.  

Given a block diagram shown in Fig. 2, the plant is given as G(z) and H(z) is the 

secondary path from the input u to the output y. The error is given as:  
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where  fx(k) is the signal after the convolution of x(k) with h(k) and it is so-called the 

filtered-x signal. d(k) is the disturbance, and e(k) is the error.   

The parameters of the controller W(z) are updated according the LMS algorithm on 

the gradient of the square of the errors [7]. 
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current and one step control parameters. µ  is the chosen convergent constant. By 

taking the expected value of Eq. (9),  the above equation can be represented by the 

following:  
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parameter. By letting ∗−= WWV , Eq. (11) can be represented as:  
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The covariance matrix R is can be diagonalized to obtain the following expression: 
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The iterative process gives the final form as  
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The sufficient condition for µ  to achieve a stable convergence is given as: 
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where )R(trace is the sum of the power of the filtered-x signal.  
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It is well-known that the maximum µ  that we can achieve is bounded by the power 

of filtered x signal. Since the fx signal is the convolution of the input signal x(k) with 

)(kh , it corresponds to the multiplication of  X(jω) with )j(Ĥ ω . With a given input 

signal x(k), )j(Ĥ ω  becomes a dominant factor in determining the convergence rate. 

This gives the motivation of investigating how the hybrid control can provide a 

solution for changing the H(z) by introducing the optimal LQG  control.  The block 

diagram of the hybrid control is shown in Fig. 3 where the secondary path has been 

changed into 
)z(H)z(K1
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= . The Kc(z) is the LQG controller designed from 

the previous section. 
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Figure 2 Block diagram of the FX-LMS algorithm 

 

 

 

 

 

 

 

 

 

 

 

                       Figure 3 Block diagram of the hybrid control algorithm 

 

HYBRID CONTROL ALOGRITHM 
Although equation (12) can provide qualitative descriptions on the convergence 

rate of the weighting control parameters, the quantitative analysis on how the designed 

Hc(z) affects the transient response is not an easy task.  To investigate the dynamic 

behaviours, disturbance d is assumed to be a purely sinusoidal signal with frequency 

equal to ω0.  In such a condition, the secondary plant and filtered signal )k(r̂ can be 

represented as: 
Φ
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By following the derivation given in [8], the adaptive feedforward LMS controller can 

be represented by an equivalent feedback controller K(z).  
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The above equation shows that the poles of the K(z) is located in 0j
ez

ω=  and thus 

provide a high rejection on single frequency disturbance of frequency ω0.  

 

 

 

 

 

 

 

 

Figure 4 Equivalent block diagram of hybrid control for purely sinusoidal disturbance 

The root locus technique in z-domain can be performed to give physical 

interpretation by varying β  from 0→∞.  Here the velocity of the platform is chosen as 

the sensor output for the simulation.  Figure 5 shows the root locus of without feedback 

controller Kc(z) and ξ  equal to 0.2 in Eq. (1). The frequency of the disturbance ω0 is 

chosen as ωn. The parameters used in the simulation is ωn equal to 15 rad/sec, the mass 

of the platform is 100 Kg.  It is shown that there are two open poles (one from )Z(K*  

and the other is the open loop H(z)) for this case. The maximum β  one can obtain to 

remain stability is the critical value as one of the root locus crosses the unit circle.  The 

optimal β  one can achieve in such a case is that the two roots have almost the same 

damping ratio of the closed loop poles. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The root locus of the open loop system 

To provide quantitative measure of the transient response, the settling time Ts is 

defined the minimum time such that )k(e2  decaying to the 1% of the magnitude of 

)k(d 2 .  The optimal β shown in Fig. 5 is defined to have the minimum settling time. It 

is clear that the system will oscillate if β is chosen to be close to critical value It is also 
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found that as the higher damping ratio of the closed loop poles can be achieved as the 

damping ratio of the plant ξ  becomes higher.   

The hybrid control provides a different way of changing the secondary plant Hc(z).  

By considering the shaping function as Eq. (3), different values fξ  are tested with a 

weighting R equal to 1. Since the feedback control produces a pair of complex 

conjugate zeros on the closed loop Hc(z), and the location of the zeros is dependent on 

the value of fξ . Therefore, the zero might attract the locus and produce better 

transient results. Figure 6 shows the root locus for fξ  equal to 0.4. The transient 

performance becomes better as comparing the case in Fig. 5. The settling time Ts 

using optimal µ for differentξf  is shown in Table 1.  It is surprised that choosing a 

smaller fξ equal to 0.1 results in the worst performance. It is because that the zero 

will be very close to the unit circle for fξ  equal to 0.1, and thus the dominant closed 

loop pole will be lightly damped.  

 

 

 

 

 

 

 

 

Figure 6 The root locus of the hybrid control system 

 

Table 1 Critical, Optimal values and settling time for differentξf 

ξf 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Open loop 

Optimal μ 0.32 0.14 0.064 0.031 0.017 0.012 0.008 0.007 0.006 0.0024 

Critical μ 0.61 0.26 0.15 0.11 0.082 0.065 0.054 0.046 0.041 0.018 

Ts  (sec) 

(optimalμ 

0.61 0.38 0.32 0.30 0.37 0.41 0.41 0.45 0.48 0.51 

  By performing the analysis on the weighting R, it is found that the best performance is 

obtained as R lies between 0.5~1. Smaller R might deteriorate the performance. Again, 

the results can be expected from root locus technique.  

   Although the analysis is based on narrow band disturbance, white noise is also tested 

on a real active-passive system. Figure 7 (a) and (b) show the transient performances 

for white noise input for the cases of adaptive feedforward LMS control, LQG and 

hybrid control. At t=0.5 in Fig 7(a), the adaptive LMS controller is applied and the 

disturbance starts to attenuate. In Fig. 7(b), the LQG control is applied at t=0. At t=0.5, 
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the hybrid control is applied and the disturbance can be rejected at 0.2 second.  

 

 

 

 

 

 

 

 

Figure 7 Comparison of different control algorithms for white noise   

  

CONCLUSION 

      In this paper, hybrid control architecture is proposed which integrates FX-LMS 

adaptive feedforward control with FSCF-LQG feedback control into one design. By 

using the root locus technique, it is found that the FSCF-LQG controller with the 

FX-LMS algorithm should be designed simultaneously to achieve better performance.  

It is also shown that the hybrid control can achieve better performance in both 

narrowband and wide band disturbance rejection.  
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