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Abstract
Successful application of rheological fluids changed classical damper characteristics with un-
controllable viscosity fluid by introduction of controllable viscosity fluids. Changes in vis-
cosity effect damping constant, therefore, behavior of mechanical system can be controlled
by variable damping force or variable damping torque. Internal combustion engines and other
machines use torsional vibration damper for limiting amplitudes of vibration at critical veloc-
ities. The design of this type of absorber consists of flywheel with friction rings that are free to
rotate on the shaft and springs under tension to generate friction between flywheel and friction
rings. When amplitude of torsional vibration increases, the flywheel does not follow the shaft
oscillations and energy is dissipated by friction due to relative motion. The springs tension
becomes a critical parameter in effective energy dissipation process. The second design is
known as untuned viscous vibration damper. In this damper a torque results from the viscos-
ity of fluid within the flywheel cavity and an relative motion. This particular design can find
a wider range of applications by utilization of rheological fluid with a controllable apparent
viscosity. In this paper discrete models of mechanical systems performing translation and tor-
sional motion with controlled damping are discussed. The modeling indicates that rheological
fluids can be effectively applied to control unwanted vibrations in mechanical systems.

INTRODUCTION

The vibrations in a mechanical system are controlled basically by the use of a linear and tor-
sional dampers or suitable vibration absorbers. Vibration absorbers are also vibrating systems
tuned to the frequency of the exciting force or torque. The absorbing system reduces the vi-
brations of the main system on the way of use of the damping force due to the viscosity of
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the fluid or suitable friction forces. The friction type torsional vibration damper commonly
known as the Lanchester damper is used in torsional vibrating systems, such as gas and diesel
engines to decrease the amplitude of torsional vibrations at critical speeds. The damper con-
sists of two flywheels which are free to rotate on the shaft and driven only by means of the
friction related to the normal pressure maintained by the tension of the springs. Properly ad-
justed, the flywheels rotate with the shaft for small oscillations. However, when the torsional
oscillations of the shaft tend to become large, the flywheels do not follow the shaft motion
because of their inertia, and energy is dissipated by friction due to relative velocity. The dissi-
pation of energy limits the amplitude of vibration and preventing high shear stress in the shaft.
The same property of damping unvanted torsional vibration can be achieved by replacing fly-
wheels under spring tension by the structure with rheological fluid (RF) and applying proper
(magnetic or electrical) external field. The second design - untuned viscous torsional damper
is effective over relatively wide frequency range. It consists of a free rotating disc within a
cylindrical cavity filled with viscous fluid. Often it is incorporated into the end pulley of a
crankshaft that drives the cooling fan belt and is known as a Houdaille damper. This damper
can be relatively simple converted to controllable untuned viscous vibration damper by the
use of RF as a damping fluid. RF will change the character of damping torque, which will
be based on viscous and Coulomb property of friction. The use of RF will improve damping
characteristics, providing continuously variable damping torque and opportunity to work with
critical damping over wide frequency range.

EQUIVALENT DAMPING OF RHEOLOGICAL FLUIDS

The response of rheological fluid RF under applied external field (RF) results from the
changes in apparent viscosity of the suspension. In the absence of an applied external field rhe-
ological fluid often exhibit Newtonian-like behavior associated mostly with base fluid phys-
ical properties. Applied external field changes this behavior and RF shows a variable yield
stress which depends on strength of that field. The Bingham plastic model of viscosity is
often used to describe that phenomenon.

τRF = τ◦(RF ) + η
∂ẋ

∂h
(1)

when τ ≥ τ◦

Where:

τ◦(RF ) = Yield Stress as a function of external field.

η ∂ẋ
∂h =Newtonian Shear Stress proportional to dynamic viscosity of the base fluid η

and velocity gradient ∂ẋ
∂h

Below the yield stress the RF behaves viscoelastically. Figure 1 shows the behaviour
of the shear stress of RF under external field.
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Figure 1: Shear stress of rheological fluid versus relative velocity and applied external field

According to Figure 1 the shear stress of RF can be expressed as:

τRF = τ◦(RF ) +
∂τRE

∂ẋ
(2)

and damping factor CRF is:

CRF = [{τ◦(RF ) +
∂ẋ

∂h
ẋ}A]

1
ẋ

(3)

where A is chosen oblique area (m2)
The damping force Fd is

Fd = τRF A (4)

and can be expressed as:

Fd =





τ◦(RF )A + ∂τRF
∂ẋ Aẋ ẋ > 0

0 ẋ = 0

−τ◦(RF )A− ∂τRF
∂ẋ Aẋ ẋ > 0

(5)

considering that:
τ◦(RF )A = Fd◦(RF ) (6)

represents yield cotrolled by external field damping force
and:
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∂τRF

∂ẋ
Aẋ = Fdη (7)

represents damping force proportional to the velocity ẋ.
The damping force is:

Fd = Fdo(RF ) + Fdη (8)

Equivalent Damping

The 1 DOF vibrating system response under harmonic excitation force F◦sin(ωt) is:

mẍ + Fd◦(RF )sgn(ẋ) + cηẋ + kx = F◦sin(ωt) (9)

where damping force has two components. One of them is a Newtonian type ad is propor-
tional to the velocity ẋ, and a second one, which depends on strength of external field and
direction of motion expressed by sgn(ẋ).

The energy dissipated, 4Eη in a viscously damped system per one cycle with viscous
damping coefficient cη is:

4Eη =
∮

Fdηdx =
∫ 2π

ω

0
cηẋ

dx

dt
dt =

∫ 2π
ω

0
cηẋ

2dt (10)

Substituting: x = Xsin(ωt) and ẋ = ωXcos(ωt) into above equation

4Eη = cη

∫ 2π
ω

0
(ω2X2ωcos2(ωt))dt (11)

We obtain

4Eη = cηπωX2 (12)

The second damping component represented by force Fd◦(RF ) in Equation 8 yields follow-
ing expression for dissipated energy:

4E(RF ) = Fd◦(RF )
∫ 2π

ω

0
[sgn(ẋ)ẋ]dt (13)

and

4E(RF ) = Fd◦(RF )X[
∫ π

2

0
cos(ωt)d(ωt)−

∫ 3π
2

π
2

cos(ωt)d(ωt) +
∫ 2π

3π
2

cos(ωt)d(ωt)]

(14)
Solving the integration yields that the energy dissipated by controllable damping force
Fd◦(RF ) is:

4E(RF ) = 4Fd◦(RF )X (15)
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To create a viscously damped system of equivalent energy loss, we obtain:

πCeqωX2 = 4Fd◦(RF )X + cηπωX2 (16)

Thus the equivalent viscous-damping coefficient Ceq yields

Ceq =
4Fd◦(RF )X + cηπωX2

πωX2
(17)

In terms of equivelant damping ratio ξeq:

Ceq = 2ξeqωnm (18)

and :

ξeq =
4Fd◦(RF )X + cηπωX2

2πωωnX2
(19)

The 1 DOF system with equivalent damping Ceq which will dissipate as much as energy as
system described by Equation 8 is:

ẍ + 2ξeqωnẋ + ω2
ηX = f◦sin(ωt) (20)

and this is also an approximation of the Equation 8

UNTUNED VIBRATION DAMPER WITH FIELD CONTROLABLE FLUID

The untuned viscous damper can be represented as a two - degree - of - freedom system. It
is attached to the shaft, as being fixed at one end and has two dampers: Newtonian and a
Coulomb type combined together at the other and. The damper is excited by harmonic torque
M◦eiωt See Figure 2. Two equations of motion (21,22) are:

Jθ̈ + kθ + Ceq(θ̇ − θ̇d) = M◦ejωt (21)

Jdθ̈ − Ceq(θ̇ − θ̇d) = 0 (22)

Where:
θ = θ◦ejωt (23)

and

θd = θd◦ejωt (24)

After substitution of complex amplitudes (23,24) into equations of motion we have:

[(
k

J
− ω2) + j

Ceqω

J
]θ◦ − j

Ceqω

J
θd◦ =

M◦
J

(25)



M Szary

Figure 2: Schematic of untuned viscous vibration damper and its linear equivalent

(−ω2 + j
Ceqω

Jd
)θd◦ =

jCeqω

Jd
θ◦ (26)

Knowing that k
J = ω2

n and Jd
J = µ we obtain following eguation as a function of ξeq, µ, ω,

and ωn. The graphical interpretation is shown in Figure 3.

|kθ◦
M◦

| =
{

µ2( ω
ωn

)2 + 4ξeq

µ2( ω
ωn

)2(1− ω2

ω2
n
)2 + 4ξ2

eq[µ( ω
ωn

)2 − (1− ω2

ω2
n
)]

} 1
2

(27)

Considering property of critical damping of vibrating system, the optimum equivalent
damping ratio is:

ξeqopt =
µ

[2(1 + µ)(2 + µ)]
1
2

(28)

The optimum equivalent damping constant for vibration damper with FR is:

Ceqopt = 2ξeqoptJωn (29)

This equivalent optimum damping constant can be tuned and controlled by intensity of
applied external field.
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Figure 3: Graphical expression of amplitude ratio |kθ◦
M◦ | versus equivalent damping ratio ξeq

for constant µ

CONCLUSIONS

The new generation of untuned but controllable vibration dampers can be design by utiliza-
tion of rheological fluids as a damping media. These dampers posses both Newtonian and
Coulomb friction properties and can be tuned by the use of an external field to work with crit-
ical damping in the wide range of frequencies. The damping torque can be speed independent
and continuously variable.
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