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Abstract 
A numerical model has been developed for simulating the oscillatory dynamics of a gas 
bubble in a strong acoustic field. The radial pulsation of the bubble is calculated by 
combining a Rayleigh-Plesset-like equation with a one-dimensional gas-dynamic problem 
that describes the gas motion inside the bubble. Solving the internal gas-dynamic problem 
together with the Rayleigh-Plesset-like equation is provided by appropriate boundary 
conditions at the gas-liquid interface. Numerical results obtained by using the above model 
are compared with those obtained on the basis of the conventional approach in which only the 
Rayleigh-Plesset-like equation is used and the gas pressure within the bubble is assumed to 
be spatially homogeneous and specified by the adiabatic law. It is shown that the difference 
between the two approaches increases with time of computation. The new model predicts the 
effect of energy pumping into the bubble which results in increasing mean bubble radius.  

INTRODUCTION 

Simulation of the interaction of a gas bubble suspended in a liquid with an acoustic 
field is commonly carried out by using a Rayleigh-Plesset-like equation. If the 
imposed acoustic field is moderate so that the compressibility of the ambient liquid 
and resulting radiation losses are negligible, the original Rayleigh-Plesset equation is 
applied [6,7]. For stronger forcing, when the velocity of the bubble surface is 
comparable to the sound speed in the ambient liquid and the acoustic radiation losses 
due to the finite liquid compressibility are no longer negligible, more complicated 
models are used, such as the Herring-Flynn equation [2,4,12], the Keller-Miksis 
equation [5], or the Gilmore model [3,10]. All the above models assume that the gas 
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pressure is spatially homogeneous within the bubble and obeys the adiabatic law. 
However, this is not always the case. For example, bubble pulsations can be too fast 
for the gas pressure to have time to become even throughout the bubble volume. In 
such cases, the description of the internal gas dynamics of the bubble by means of 
general hydrodynamic equations is more justified. It is the purpose of the present 
paper to develop such a model and compare its predictions with results provided by 
Rayleigh-Plesset-like equations.  

NUMERICAL MODEL OF BUBBLE OSCILLATIONS IN A LIQUID 

In this section, a model is developed that describes the radial motion of a gas bubble 
in an acoustic field, the gas pressure within the bubble being calculated by gas-
dynamic equations. The following computational procedure is applied. The velocity 
of the bubble surface is calculated from a Rayleigh-Plesset-like equation and then 
used as the boundary condition at the gas-liquid interface in the gas-dynamic problem 
which describes the gas motion within the bubble for a given time layer. The gas 
pressure obtained by solving this problem is then used to determine the velocity of the 
bubble surface for the next time layer.  

Mathematical model 

As the problem under consideration is one-dimensional, it is reasonable to solve it 
using the Lagrangian method. The continuity equation, written in Lagrangian mass 
coordinates, for the case of spherical symmetry, and with respect to the density per 
unit spatial angle, takes the form [13]:    

m

ur

t

21
, (1)  

where 

 

and u are the density and the velocity of the gas, respectively, and the 
relation between the Euler and the mass coordinates is given by 2dm drr .  

The equation of motion in the Lagrangian coordinates is written as    
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u 2 , (2)  

where p is the gas pressure. 
The small size of the bubble and the high value of the speed of sound lead to 

very small time steps. As a result, the solution of the problem is reached over a very 
large number of time steps. In addition, in some cases it is necessary to trace the 
medium parameters for a large number of oscillations. These circumstances make 
high demands to the accuracy of energy computation. Therefore it is reasonable to 
take the equation of energy in the divergent form: 
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where  is the internal energy per unit mass.  
The surface tension pressure on the bubble surface is given by   

2
p

R
, (4)  

where is the surface tension coefficient and R is the radius of the bubble.  
To close the set of (1) 

 

(4), it should be supplemented with a state equation, 
( , )p p . If the temperature distribution within the gas is required, an equation for 

temperature, ( , )T T , should be added as well. For a perfect gas, these equations 

can be written as ( 1)p

 

and vT c , where 

 

is the ratio of specific heats 
and vc  is the specific heat at constant volume.  

The boundary condition R vu

 

at the spherical bubble surface is sort of a 
piston, whose velocity v

 

is calculated from a Rayleigh-Plesset-like equation which 
takes in general the form:   
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dR
v , (5)  

where 0P

 

is the initial pressure in the ambient liquid, gP

 

is the gas pressure, acP

 

is 

the imposed acoustic pressure, 

 

is the liquid viscosity, 0

 

is the equilibrium liquid 

density, and 

 

is the speed of sound in the liquid. A particular form of (5) is chosen 
depending on the problem parameters.  

Numerical model 

Solution of the set of gas-dynamic equations (1) 

 

(4) can be written on a mass non-
uniform grid: m = {mi, mi+1/2, mi+1 = mi+hi, mi+1/2 = mi+0.5hi, i = 0,1,..., N-1, m0 = 0, 
mN = M}, where 

 

is the mass of the gas. The grid functions of the radius ri = r and 
the velocities ui = u are related to the integer points of the grid, while the pressures 
pi+1/2 = p, the densities i+1/2 = , the internal energies i+1/2 = , and temperatures to 
the half-integer points mi+1/2. The set of difference equations can then be written as 
[11]   
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The difference scheme (6) approximates the set of the gas-dynamic equations with 
accuracy up to the second order in both the spatial and time coordinates. The implicit 
scheme (6) was solved by an iteration method. Convergence of the specific internal 
energy 

 

over every time layer for every computational cell was used as the 
convergence condition. The gas pressure at the bubble surface obtained by (6) was 
used as an input parameter for (5), which was solved by the explicit scheme accurate 
to first or second order in time.  

The 1D program for modeling the above-stated problem was built up on the 
basis of the well-known programming system OLYMPUS [1,9]. This latter is based 
on the principle of computation with splitting into different physical processes. The 
bundled software includes the specially developed internal system of graphic output 
SIGO, which makes it possible to monitor computational results in interactive mode. 
In addition, the stand-alone system of animation and graphic output, SAGO, allows 
computational results to be represented both in graphic form and as animation films 
created on the basis of the problem parameters.  

NUMERICAL SIMULATION 

In this section, the potential of the developed model is demonstrated by numerically 
simulating radial oscillations of an air bubble in water. Physical conditions 
characteristic of experiments on sonoluminescence were set. The radial motion of the 
bubble is described by the Keller-Miksis equation [5], which is written in terms of the 
velocity of the bubble surface v  as    
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where RP  is given by 
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The time-varying gas pressure tPg is calculated either from the adiabatic law,   
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in the case that the calculation is carried out by using the Keller-Miksis equation 
alone, or from the gas-dynamic problem, as the value of the gas pressure at the inner 
bubble surface.  
The imposed acoustic pressure tPac is specified by    

sin(2 )ac AP t P ft , (10)  

where AP  is the pressure amplitude and f  is the driving frequency. The values of the 

physical parameters required for these calculations are 1.4 , 0.0725

 

N/m, 

0.001

 

Pa s, 5
0 1.014 10P

 

Pa, 0 1000

 

kg/m3, and 1500c

 

m/s. The other 

parameters were as follows: the initial bubble radius 6
0 5 10R

 

m, the driving 

frequency 42 10f

 

Hz, and the acoustic pressure amplitude 01.26AP P . The initial 

bubble radius was covered with a computational grid, which consisted of 100 cells, in 
the following way. The first eight computational cells counting from the center of 
symmetry were set equal in mass. The rest of the computational grid consisted of 
cells with an equal spatial step. This partition made possible correcting the strong 
mass-irregular character of the computational grid in the proximity of the coordinate 
origin for the spatially uniform grid. Simulations by the developed model and by (7) 
alone were carried out simultaneously with the same time step t , which made 
possible avoiding additional errors related to the different precision of approximating 
the equations at different time steps. The value of the time step in the gas-dynamic 
problem was chosen by Courant s condition [8]. The small size of the time step, 
especially at the moments of the maximum bubble contraction, resulted in the fact 
that the accuracy of the solution of (7) in the first and the second orders coincided 
with the graphical accuracy. 

Figure 1 shows the variation of the bubble radius over approximately 6.5 cycles 
of the acoustic wave. One can see that the main discrepancy between the solution 
obtained from (7) alone (black line) and that obtained by combining (7) with (1)  (4) 
(red line) lies in different amplitudes of the high-frequency rebound oscillations of the 
bubble, which are noticeably smaller in the latter case. In addition, if the plot scale is 
increased, one can see an increase in the bubble radius at the moments of maximum 
expansion, which is growing cycle by cycle. To understand this effect, let us consider  
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Figure 1. Bubble radius as a function of time. The black line corresponds to the solution of 
the Keller-Miksis equation alone. The red line shows the result given by the developed model.  

work that is done by the ambient liquid on the bubble, see Figure 2. As one would 
expect, the total work done on the bubble over each oscillatory period for the case of 
the Keller-Miksis equation is zero, which corresponds to the adiabatic law used in this 
equation. A different pattern occurs if the gas-dynamic problem for the gas motion 
within the bubble is solved. In this case, energy pumping takes place, which results in  
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Figure 2. Work done by the ambient liquid on the bubble as a function of time.  

increasing mean bubble radius. The effect of the energy pumping into the bubble is 
explained by Figure 3, which shows that work at the gas compression occurs when 
the pressure inside the bubble monotonically increases from the center of the bubble 
towards the gas-liquid interface. Such a moment is just displayed in Figure 3. The 
expansion of the bubble occurs at reduced pressure at the gas-liquid interface relative 
to the pressure in the inner bubble area. This behavior of the pressure profile results in 
the energy pumping into the bubble during every acoustic cycle and renders the 
adiabatic process irreversible. Numerous high-frequency rebound oscillations 
following the main oscillation lead to a tangible energy pumping into the bubble.  
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Figure 3. Velocity (v) and pressure (p) along the bubble radius for t = 124 µs.   
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Figure 4. Gas temperature at different instants of time. The instants t1 and t3 correspond to 
the maximum expansion of the bubble, while t2 and t4 to its maximum compression.   

Finally, Figure 4 demonstrates the temperature profiles inside the bubble which 
approximately correspond to some points in time when the expansion or compression 
of the bubble is a maximum. The time points in Figure 4 are for the first and the sixth 
cycles of the acoustic wave. The temperature, to which the area nearby the bubble 
center is warmed up, is so high that the effects of thermal conductivity and radiation 
are no longer negligible. The temperature growth at the bubble center over every 
period of the acoustic wave (Figure 4) is due to the above-stated process of energy 
pumping. Clearly such a system can arrive at a steady state in the case that losses due 
to, for example, re-radiation are equal to the acoustic-wave energy pumping. 

CONCLUSIONS 

The developed numerical model, based on combining a Rayleigh-Plesset-like 
equation with the gas-dynamic problem for the interior of a gas bubble, can be 
applied in many numerical investigations. Simulations carried out by using the above 
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model predict the effect of energy pumping into the bubble which results in 
increasing mean radius of the bubble. The data on the distribution of the gas 
parameters within the bubble volume suggest that the model can be improved by 
incorporating the effects of thermal conductivity and radiation transfer of energy as 
well as by replacing the perfect gas law with equations of state for real gases, such as 
table relationships. The set of Rayleigh-Plesset-like equations available in the 
bundled software makes possible comparison between numerical simulations 
performed under various starting assumptions. The capabilities of the model can be 
extended by setting a virtual oscillating surface at a distance inside the ambient liquid 
rather than at the very gas-liquid interface. In this case, surface effects at the gas-
liquid interface will fall within the domain of the gas-dynamic problem.   
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