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Abstract

Shallow shells are commonly used as constructional elements in cages of heavy duty ma-

chines. These elements, are sources of structural noise radiated during the machine operation.

In the previous authors’ papers the analysis of influence of curvature of the shallow shell

elements on the level of their structural vibrations and sound radiation for different kinds

of excitation (deterministic: harmonic, polyharmonic; random of white noise type) were dis-

cussed. In the presented paper the method based on the acoustic power radiated by the shell is

applied to estimate the sound radiated by randomly excited shallow shells with different radii

of curvatures. The shell is loaded by the continuous force, distributed over the middle surface,

and randomly varying in time. The random, coloured noise type of excitation is assumed. The

estimations are valid for the acoustic far-field.

INTRODUCTION

Shallow shells are commonly used as constructional elements in cages of heavy duty ma-

chines. These elements, are sources of structural noise radiated during the machine operation.

In the previous authors’ papers the analysis of influence of curvature of the shallow shell ele-

ments on the level of their structural vibrations for different kinds of excitation (deterministic:

harmonic, polyharmonic; random: white and coloured noise) were discussed [5, 6, 7, 8, 9].

In the presented paper the method based on the acoustic power radiated by the shell was ap-

plied to estimate the sound radiated by randomly excited shallow shells with different radii of

curvatures. The estimations are valid for the acoustic far-field.
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MATHEMATICAL DESCRIPTION OF VIBRATION

Geometry, equations of motion, boundary conditions, solution

Let us consider the vibrating shallow shell with internal viscoelastic damping. As shallow

shell it is understood a shell for whom for every point connected to its middle surface, the

angle between tangent plane and its perpendicular projection on the plane is enough small

[10] i.e. is smaller than about 18 deg [15]. The other definition says that for shallow shell the

ratio between strzalka and the characteristic dimension l = min(a, b) is smaller than 0.2 [3]

(see Fig.1).

Figure 1: Geometry of shallow shell

The Voigt-Kelvin model of damping was assumed. The detailed description of the

model are given in the paper [9]. Some theoretical background of the applied shell models

can be found in [2, 10, 13, 14]. The geometry of shallow shell is shown in Fig.1. The inertial

components which represents the motion in tangential directions of the middle surface are

neglected in the model. Moreover it is assumed that the velocity components in the in-plane

equations of motion are neglected, and the only excitation in the Oz direction are taken into

account. The excitation has the form of surface distributed function, which is multiplication

of the two components: constant value z0 and the randomly variabled time function f(t). The

obtained set of equations of motion have the forms (1), where the symbols denote: u, v,w

– displacements in directions Ox, Oy and Oz respectively, Rx and Ry – radii of main cur-

vatures, h – thickness, E – Young modulus, ν - Poisson ratio, D – bending stiffness, B –

in-plane stiffness, ε - viscous damping coefficient, ρ - material density.
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Rx

) − ρh
B

v̈ = 0

∂4w
∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w
∂y4 + 12

h2 ( 1
Rx

+ ν
Ry

)∂u
∂x

+ 12
h2 ( 1

Ry
+ ν

Rx
)∂v

∂y

+ 12
h2 ( 1

R2
x

+ 1
R2

y
+ 2ν

RxRy
)w + ε∂4ẇ
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(1)

The boundary condition of the shell have the following form: the simply supported one

for bending vibrations (2) and the free-fixed one for the in-plane vibrations (3).

w(x, y, t)|x=0 = 0 Mx(x, y, t)|x=0 = −D ∂2w(x,y,t)
∂x2 |x=0

= 0

w(x, y, t)|x=a = 0 Mx(x, y, t)|x=a = −D ∂2w(x,y,t)
∂x2 |x=a

= 0

w(x, y, t)|y=0 = 0 My(x, y, t)|y=0 = −D ∂2w(x,y,t)
∂y2

|y=0
= 0

w(x, y, t)|y=b = 0 My(x, y, t)|y=b = −D ∂2w(x,y,t)
∂y2

|y=b
= 0
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v(x, y, t)|x=0 = 0 Nx(x, y, t)|x=0 = B[∂u(x,y,t)
∂x

+ ν ∂v(x,y,t)
∂y

]|x=0 = 0

v(x, y, t)|x=a = 0 Nx(x, y, t)|x=a = B[∂u(x,y,t)
∂x

+ ν ∂v(x,y,t)
∂y

]|x=a = 0

u(x, y, t)|y=0 = 0 Ny(x, y, t)|y=0 = B[∂v(x,y,t)
∂y

+ ν ∂u(x,y,t)
∂x
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u(x, y, t)|y=b = 0 Ny(x, y, t)|y=b = B[∂v(x,y,t)
∂y
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Randomly excited vibrations

When analysing the free vibrations case, it can be shown that the eigenfunctions for the

(m,n) − th mode of flexural vibration can be written in the form (4) [4, 9].

wmn(x, y) = sin(
mπ

a
x) sin(

nπ

b
y) (4)

Let us assume that the time function f(t) is a random stationary process with zeroes

average value < f(t) >= 0, and well-known correlation function Kff (t1, t2) = Kff (τ);

τ = t2 − t1. The solution of the problem for function of transversal vibrations w(x, y, t)
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can be written in the series form (5), with unknown functions of time Smn(t). Solving the

problem for determining functions Smn(t) in the way described in [9], the formula for un-

known autocorrelation function Kww takes the form (6). This formula is written as a function

of unknown transfer functions hmn(t).

w(x, y, t) =
+∞
∑

m,n=1,3,5,...

wmn(x, y)Smn(t) (5)

Kww(t1, t2) = 256
π4

z0
ρ2h2

+∞
∑

m,n=1,3,5,...

1
mn

+∞
∑

j,k=1,3,5,...

1
jk

wmn(x, y)wjk(x, y)·

t1
∫

0

hmn(t1 − τ1)
t2
∫

0

hjk(t2 − τ2)Kff (τ1, τ2) dτ1 dτ2

(6)

Dispersion of transversal displacements σ2
w(t) can be obtained directly based on the

correlation function of excitation function by assuming contition t1 = t2 = t. For such a

case, the correlation fuction of the excitation process has a form (7). The integral of transfer

functions hmn, takes the form (9), where α and β are the coefficients applied to define the

form of coloured noise. When α → +∞, it is obtained the limit case of the noise – the white

nose. In the other case, for α = 0 it is obtained the harmonic, deterministic function.

Kff (τ1, τ2) = e−α|τ1−τ2)| cos(β(τ1 − τ2)) (7)
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In the considered case, the dispersion of the normal displacements, can be written in the

form (8). The complete funcion is defined after calcullation of integrals for suitable corelation

funcion of random coloured noise type funtion of excitation.

The detailed form of the function can be obtained after assuming the suitable form

of the correlation function of external excitation Kff . For the analysed case of the coloured

noise (7), it has the form (9).

Based on the given relationships, the calcullation of the dispersion of transversal dis-

placements or velocty is possible.

Estimation of acoustic radiation

The knowledge of the dispersion of displacements in Oz direction gives possibility to estimate

the dispersion of the sound pressure level in chosen control point in acoustic medium. The

method of estimation is based on the analysis of sound power radiated by vibrating panel.

The acoustic sound power can be estimated based on the simplified formula (10) [1]. On the

other hand, the pressure in the far-field, can be estimated based on the formula (11) [11].

After suitable manipulations, based on the formulas (10) and (11), it is possible to estimate

the averaged pressure level Lp. The applied symbols denote: < V 2
n > - squared normal

velocity averaged over the shell surface, ρ0 – density of the acoustic medium, c – speed of

sound in acoustic medium, S - area of the shell, S∗ - area of the hemisphere with radius equal

to approximate distance of the control point from the radiating panel, Wrad – sound power

radiated by the shell, σrad – radiation efficiency coefficient, pav – averaged sound pressure.

Wrad = σrad ρ0 c S < V 2
n > (10)

ρ c Wrad = p2
av S∗ (11)

NUMERICAL EXAMPLE

Let us consider the shallow shell in the form of elliptical paraboloid made of steel, whose

equation of middle surface has the form (12). Their projection on the xy plane has the form

of a square a=b=1 m. The thickness is h=0.002 m, and the damping coefficient is equal ε =

0.001. The detailed values of geometrical and material parameters are the same like in [9].

The amplitude of excitation is equal to z0 = 1N/m2.

z(x, y) = f [1 − (2x − a)2

2a2
− (2y − b)2

2b2
] (12)

The β parameter definig the colured noise was assumed as equal to 60 rad
s

, which corre-

sponds with the lowest natural frequencies for plate (f = 0, ω(1,1) = 61.6 rad
s

). The two group

of estimation have been done. For the first one, the variable parameter was value of deflection

f , and the second parametrer defining the coloured noise α was constant value equal to 0.1.

The estimated values of the pressure dispersion levels in the control points distanced 1 m, 3 m
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and 5 m over the centre of the middle surface, for different values of deflection f are given in

Table 1. In the Table 2, values of the same parameters estimated in the same control points,

but analysed for plate (deflection f = 0) and different values of parameter α. The effect of

increasing of the sound pressure level in accordance with increasing of the parameter α is

connected with different energy of the considered signals.

Table 1: Powered dispersion of transversal displacements and velocity, averaged over the

surface of element, and dispersion of sound pressure in control points, for different values

of deflection f , and constant value of parameter α = 0.1.

f < σ2
w > < σ2

ẇ > Lσ2
p

[dB]

[m] [m2] [m2

s2 ] R=1 m R=3 m R=5 m

0 5.635 · 10−6 8.589 · 10−3 117.9 108.4 103.9

0.01 4.948 · 10−6 9.291 · 10−3 118.3 108.7 104.3

0.02 3.991 · 10−6 8.445 · 10−3 117.8 108.3 103.9

0.05 6.796 · 10−8 2.934 · 10−4 103.2 93.7 89.3

0.1 1.884 · 10−8 9.585 · 10−5 98.4 88.8 84.4

0.2 1.231 · 10−9 6.354 · 10−6 86.6 77.1 72.6

Table 2: Powered dispersion of transversal displacements and velocity, averaged over the

surface of plate, and dispersion of sound pressure in control points, for variable value of

parameter α.

α < σ2
w > < σ2

ẇ > Lσ2
p

[dB]

[–] [m2] [m2

s2 ] R=1 m R=3 m R=5 m

0 5.322 · 10−6 7.876 · 10−3 117.5 108.0 103.6

0.05 5.478 · 10−6 8.225 · 10−3 117.7 108.2 103.7

0.1 5.635 · 10−6 8.589 · 10−3 117.9 108.4 103.9

1.0 9.502 · 10−6 1.188 · 10−2 121.3 111.8 107.3

CONCLUSIONS

The results of analysis show an important influence of the shallow shell radii of middle surface

curvatures on dispersion of the pressure in chosen control point in the acoustic surrounding

medium.

With increasing of the shell radii of curvatures, which is connected with increasing

the shell deflection f , the values of basic natural frequencies rapidly growths. The effect of

increasing is stronly higher for the parameter of modal damping coefficient.
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