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Abstract 
This paper presents a Filtered-x version of the Stochastic Partial Updates (SPU) Least Mean 
Square (LMS) algorithm and compares its performance with other algorithms in the context 
of an Active Noise Control (ANC) system.  

The proposed strategy, aiming at the lessening of the computational complexity, is 
based on partial updates (PU) of the weights of the adaptive filter. The inherent reduction in 
convergence rate due to the fact that only a fraction of coefficients are updated during each 
cycle is compensated by increasing the step size. The subset of coefficients updated at each 
iteration is sampled at random. In so doing, the maximum step size that can be used in the 
proposed algorithm is N times greater than that of the FxLMS, being N the decimating factor.  

The theoretical performance of this algorithm are validated by simulation and by 
practical results obtained from experiments carried out in a in-vehicle implementation. 

INTRODUCTION 

The Filtered-x Least Mean Square (FxLMS) algorithm is the most widely used 
adaptive algorithm in DSP-based implementations of ANC systems [3]. As far as the 
length of the filter is concerned, the adaptive FIR filter may eventually require a large 
number of coefficients to accurately model the primary path and inversely model the 
secondary path. Therefore, the improvement in the performance is achieved at the 
expense of increasing the computational load of the control strategy. In order to 
lessen the complexity without shortening the length of the filter one may choose to 
update only a portion of the weights vector during each sample period [1], [2]. The 
decimating factor N is defined as the filter length divided by the number of 
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coefficients updated per iteration. Nevertheless, PU algorithms suffer from one 
drawback: their convergence rate is reduced in proportion to N [1]. 

The Filtered-x Sequential Least Mean Square algorithm with step-size Gain 
(Gµ-FxSeq LMS) was proposed in previous works [4]. The Gµ-FxSeq LMS 
algorithm is based on Sequential PU of the coefficients as well as on the controlled 
increase in the step size of the adaptive filter and can be applied in active control of 
periodic disturbances consisting of several harmonics. The referred step-size gain 
determines the ratio between the maximum step size valid for the proposed algorithm 
and the maximum step size valid for the FxLMS. By multiplying the convergence 
factor by the gain it is possible to compensate the reduction in convergence rate due 
to PU. The analysis of the Gµ-FxSeq LMS determines that the step-size gain depends 
on the frequency and prevents from the use of frequencies corresponding to notches 
which appear in the gain of the adaptive algorithm. To sum up, the Gµ-FxSeq LMS 
algorithm can achieve the same performance that the FxLMS provides in terms of 
convergence rate and misadjustment with a minor computational complexity, as long 
as the undesired disturbance has no components at the frequencies where there are 
notches in the step-size gain. 

The strategy here proposed, Filtered-x Stochastic Partial Updates Least Mean 
Square algorithm with Gain in step size (Gµ-FxSPU LMS), overcomes the limitations 
imposed by the notches in the gain of the Gµ-FxSeq LMS algorithm at the cost of a 
slight increase in the computational load. Not being so computationally efficient as 
the Sequential version, the Gµ-FxSPU LMS  algorithm is, however, operationally less 
intensive than the conventional FxLMS.  

STOCHASTIC PARTIAL UPDATES 

Gµ-Fx SPU LMS algorithm 

Figure 1 shows the block diagram of a Filtered-x ANC system where the secondary 
path S(z) is placed following the digital filter W(z) controlled by an adaptive 
algorithm. Under the assumption of slow convergence, the order of the secondary 
path and the adaptive filter can be commuted. Besides, if the off-line estimate of the 
secondary path is accurately obtained, then, the resulting equivalent diagram 
simplifies and the output of the adaptive filter carries through directly to the error 
signal, Thus, standard LMS algorithm techniques can be applied to the Filtered-x 
version of the SPU LMS algorithm in order to determine the convergence of the mean 
weights and the maximum value of the step size [3].  

Both conditions are assumed so as to simplify the analysis by considering the 
filtered reference as the regressor signal of the adaptive filter. The proposed Gµ-
FxSPU LMS algorithm compensates the reduction in convergence rate by means of a 
gain in step size -Gµ(N)- applied to the maximum step size µ valid for the FxLMS. 
This factor µ is inversely bounded by the largest eigenvalue of the input 
autocorrelation matrix as follows: 



ICSV13, July 2-6, 2006, Vienna, Austria 

 Figure 1 – Block diagram of ANC system controlled by a Filtered-x adaptive algorithm.  
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The question that should be answered is how larger the step size can be made if 
only a subset of Lw/N coefficients out of the Lw length filter are randomly updated 
per iteration; in other words, what is the step-size gain of the proposed strategy?. 

 The l-th coefficient of the adaptive filter is partially updated according to the 
SPU LMS equation expressed as follows: 
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where Gµ is the gain in step size, µ is the maximum step size valid for the FxLMS 
and b(l,n) can be either 1 or 0 with the following probabilities: 
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Taking the expected value of both sides of Eq. (2) we have: 
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From the simplified analysis of the FxLMS outlined at the beginning of this 

section, the maximum step size for the Gµ-FxSPU LMS algorithm is derived as 
follows [3]: 
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From the comparison of Eq. (1) and Eq. (5) it can be concluded that the increase 
in step size of the proposed Filtered-x SPU algorithm with respect to the maximum 
step size of the FxLMS is given by: 

 
NNG =)(µ            (6) 

 
and such an increase does not depend on the spectral distribution of the undesired 
disturbance. 

Computational complexity 

Table 1 shows the computational complexity of the LMS, the Sequential PU LMS 
and the Stochastic PU LMS algorithms in terms of the average number of operations 
required per cycle when used in the context of a Filtered-x implementation of a single 
channel ANC system. The length of the adaptive filter is Lw, the length of the off-line 
estimate of the secondary path is Ls and the decimating factor is N. 
 
Table 1 – Computational complexity of FxLMS, Gµ-FxSeq LMS and Gµ-FxSPU LMS 
algorithms in terms of the average number of additions and multiplies per iteration. 
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The Stochastic PU algorithm is slightly less efficient than the Sequential PU 

algorithm due to the inherent fact that is impossible to determine a priori the subset of 
coefficients that will be updated at the current iteration. Therefore, as there is not any 
clue about which samples of the regressor signal will be used during the updating 
process it is necessary to obtain a new sample of the filtered reference at every cycle 
and a Lw-length buffer filled with the Lw most recent samples of the filtered reference 
must be managed by the control system. Nevertheless, as it will be proved in the 
section devoted to the experimental results, the number of coefficients of the estimate 
of the secondary path can be reduced to the extreme of taking into account just the 
two more significant coefficients of the off-line estimate. If that is the case -Ls=2-, 
the computational complexity of the Gµ-FxSPU LMS and the Gµ-FxSeq LMS 
algorithms differ in a negligible amount of operations in comparison with the term 
depending on the length of the adaptive filter. 
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SIMULATION 

This section describes the results achieved by the Gµ-FxSPU LMS algorithm by 
means of a computer model developed in MATLAB on the theoretical basis of the 
previous section. 

Power spectral density of the undesired disturbance which has to be cancelled 
in this simulated example is depicted in Figure 2.a. The reference and the undesired 
signal were previously recorded by a two channel signal acquisition system. The 
secondary path is modeled -by a 4 order elliptic IIR filter- as a high pass filter whose 
cut-off frequency is imposed by the poor response of the loudspeakers at low 
frequencies. Transfer function of the secondary path S(z) is shown in Figure 2.b. The 
off-line estimate of the secondary path was accurately carried out by an adaptive FIR 
filter of 200 coefficients updated by the LMS algorithm solving a classical problem of 
system identification. The adaptive filter in all cases has 256 coefficients.  

Benefits of the Gµ-FxSPU LMS algorithm over the previously outlined Gµ-
FxSeq LMS are illustrated in this example my means of a simulation that compares 
the learning curves. The Sequential algorithm is run with two different decimating 
factors -N=4 and N=5-. Gain in step size in both cases are shown in Figures 2.c and 
2.d, respectively [4]. According to the figures, the third harmonic (200 Hz) of the 
acoustic disturbance is located at the first notch of the gain in step size if N=4. As a 
result of that, the full strength gain Gµ=N=4 can not be applied in this case. Figure 3 
compares the ensemble averages of 100 learning curves of the attenuation of the six 
harmonic signal by different strategies. As expected, the curves for FxLMS, Gµ-
FxSeq LMS with N=Gµ=5 and Gµ-FxSPU LMS with N=Gµ=4 are almost identical. 
Also predicted was the instability of the Gµ-FxSeq LMS algorithm with N=Gµ=4 due 
to the notch at 200 Hz. 

 

 
 

Figure 2 – a) Power Spectral Density of the undesired disturbance consisting of harmonics at 
100, 150, 200, 250, 300 and 350 Hz. b) Magnitude of the secondary path. c) Gµ of the Gµ-

FxSeq LMS; Lw=256 and N=4. d) Gµ of the Gµ-FxSeq LMS; Lw=256 and N=5. 
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Figure 3 – Ensemble averages of 100 simulated learning curves: a) Fx LMS.                
b) Gµ-FxSeq LMS; N=Gµ=5. c) Gµ-FxSeq LMS; N=Gµ=4. d) Gµ-FxSPU LMS; N=Gµ =4.  

EXPERIMENTAL RESULTS 

The Gµ-FxSPU LMS algorithm has been put into practice in a two independent 
channel implementation of an ANC system placed at the front seats of a Nissan 
Vanette. Two error microphones are located near the head of the driver and the 
passenger. Tests made in the laboratory showed that cross terms can be omitted 
without degrading the performance of the system. Low cost microphones and 
loudspeakers with poor response at low frequencies were used. The distance between 
a microphone and its respective secondary source in this experiment of local 
minimization of noise is 6 cm. The main Digital Signal Processor board employed to 
develop the strategy was the PCI/C6600, based on the DSP TMS320C6701. The 
selected Input/Output board was the PMCQ20DS. This board disposes of 4 A/D and 
4 D/A converters. The number of weights of the FIR off-line estimate of the 
secondary path was reduced to the extent of taking Ls=2 in order to minimize the 
term of the computational cost that does not inversely depend on the decimating 
factor N (see Table 1). In previous works it has been proved that an ANC system 
finds more difficulties in the attenuation of harmonics very close in the frequency 
domain [4]. This problem can be avoided by increasing the number of coefficients of 
the adaptive filter. So as to deal with acoustic disturbances consisting of very close 
harmonics the length of the adaptive filter was set to Lw=1008 coefficients. Very 
large decimating factors -with the subsequent gain in step size- were used to lessen 
the computational complexity without slowing down the convergence rate. In order to 
carry out a performance comparison of different control strategies it is essential to 
repeat the experiment in the same scenario. Due to the independence of both 
channels, different control algorithms can be tested simultaneously. In order to avoid 
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fluctuations in level and frequency of the undesired disturbance, instead of starting 
the engine, we previously recorded a signal consisting of very close harmonics (200, 
210, 220 and 230 Hz). The omnidirectional source Brüel & Kjaer Omnipower 4296 
placed inside the van was fed with this signals and acted as the source of the primary 
noise. The attenuation of the noise was carried out by the FxLMS and the Gµ-FxSPU 
LMS algorithms in the same conditions and convergence rates and residual error were 
properly compared. Although reductions in the number of mathematical operations 
are an indication of the computational efficiency of an algorithm, such reductions 
may not directly translate to a more efficient real-time DSP-based implementation on 
a hardware platform. To accurately gauge such issues one must consider the freedoms 
and constraints that a platform imposes in the real implementation, such as parallel 
operations, complex addressing modes, registers available or number of arithmetic 
units. In our case, the control strategy and the assembler code was developed trying to 
take full advantage of these issues. As far as the generation of the random indexes is 
concerned, a table with random numbers is managed by the PC -not by the DSP- in 
order to provide the indexes of the coefficients to be updated at the current iteration 
with very little additional computational cost. 

Experimental results achieved in the attenuation of the previously mentioned 
multi-tone acoustic disturbance are shown in Figure 4. An appropriate choice of 
parameters (see Figure 4.c where Ls=2 and N=Gµ=504) results in a extremely low 
complex ANC strategy that provides performance comparable to that of the FxLMS. 
It has been experimentally checked that in order to effectively attenuate harmonics as 
close as the components of the signal of the example (Figure 4) by means of a simple 
FxLMS algorithm it is necessary an adaptive filter with more that 500 coefficients. In 
the implementation a 1008-weight filter has been used. Our interest in the reduction 
in the required instructions per cycle is justified by the necessity of attenuating 
acoustic disturbances with spectral distribution consisting of close harmonics -the 
noise produced by an engine, for instance- without consuming all the resources of the 
DSP and enabling efficient ANC systems to be implemented on a simple processor. 
Test of the ANC system based on the Gµ-FxSPU LMS algorithm carried out with 
many other acoustic disturbances with different spectral distributions also provided 
satisfactory performance. Experiments have also shown that an increase in the 
number of coefficients of the off-line estimate of the secondary path results in a 
slightly faster convergence of the error. Considering the number of multiplications as 
a valid indicator of the overall complexity, the computational savings of the Gµ-
FxSPU LMS algorithm with regard to the number of instructions required by a 
conventional FxLMS strategy are given by Table 2 for different values of the length 
of the secondary path (Ls) and the decimating factor (N): 

 
Table 2 –  Savings in average number of multiplications per cycle. The length of the adaptive 
filter is Lw=1008 coefficients. 

Saved Multiplications (%) N=42 N=504 
Ls=2 48.74 % 49.83 % 

Ls=200 44.38 % 45.48 % 
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Figure 4 – Smoothed learning curves measured at the driver position. ANC system 
attenuating an acoustic disturbance consisting of harmonics at 200, 210, 220 and 230 Hz.

  a) FxLMS, b) Gµ-FxSPU LMS N=Gµ=42, c) Gµ-FxSPU LMS N=Gµ=504. 

CONCLUSIONS 

So as to assess the effectiveness of the Filtered-x Stochastic Partial Updates LMS 
algorithm with step-size Gain the proposed strategy was not only tested by simulation 
but was also evaluated and compared in a practical DSP-based implementation. In 
both cases the results confirmed the expected behavior: the bound on step size for 
convergence of the weight vector mean to its optimum value is N times  larger  for  
the  Gµ-FxSPU LMS  algorithm  than  for  the FxLMS. Even when the number of 
operations per iteration is significantly reduced due to PU, the affordable increase in 
step size compensates the lack of adaptation of most of the coefficients. To sum up, 
this strategy results in an algorithm with lower computational cost and a performance 
very close to the conventional FxLMS. The proposed SPU algorithm overcomes the 
limitations that the Gµ-FxSeq LMS algorithm shows at certain frequencies due to the 
notches that impair the use of the full strength gain. 
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